南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (7): 38–.

• • 上一篇    下一篇

超宽带水声信道中基于不等间隔傅里叶变换的OFDM多普勒系数估计

陈阳1*,殷敬伟2,赵安邦2   

  • 出版日期:2015-12-27 发布日期:2015-12-27
  • 作者简介:(1. 常州大学信息科学与工程学院,常州,213164;2. 哈尔滨工程大学水声工程学院,哈尔滨,150001)
  • 基金资助:

    基金项目: 国家自 然科学基金 (61501061) ,海洋工程国家重点实验室(上海交通大学)开放课题项目 (1316)

    收稿日期:2015-06-30

    * 通讯联系人, E-mail: chenyang.heu@163.com

Doppler scale estimation with non-uniform fast Fourier transform for OFDM communication over ultrawideband underwater acoustic channels

Chen Yang1*, Yin Jingwei2, Zhao Anbang2   

  • Online:2015-12-27 Published:2015-12-27
  • About author: (1. School of Information Science and Engineering, Changzhou University, Changzhou, 213164, China; 2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, 150001, China)

摘要: 由于水声信道的超宽带特性,水声OFDM通信中不同子载波的多普勒频偏具有非一致性,影响多普勒系数估计的精度。本文提出按假设的多普勒系数确定空子载波频率,利用不等间距傅里叶变换计算空子载波的能量和为代价函数,利用最速下降法搜索代价函数最小值估计多普勒系数。该方法可避免通过估计各子载波非一致的CFO来估计多普勒系数而引起的误差,提高多普勒系数估计精度,同时利用NUFFT计算空子载波的能量和,可有效降低算法计算量。通过湖试实验数据验证本文方法,实验中相对移动速度达5kn,信号相对带宽达67%,利用本文方法估计的多普勒系数对数据进行多普勒补偿,获得了优良的通信效果,显示了该方法的有效性.

Abstract: Due to the ultrawideband characteristics of underwater acoustic (UWA) channels, the Doppler frequency offsets of different subcarriers are not the same in UWA orthogonal frequency division multiplexing (OFDM) communications. The accuracy of Doppler scale estimation suffers from the influence of this non-uniformity. In this paper, the frequencies of null subcarriers are calculated according to the expected Doppler scales. And then the cost function which is the powers of all null subcarriers versus the expected Doppler scales is achieved by non-uniform fast Fourier transform (NUFFT). A Doppler estimation algorithm of searching the minimum position of the cost function by the method of steepest descent is proposed. This algorithm improves the precision of Doppler scale estimation by avoiding the error of estimating non-uniform carrier frequency offsets (CFO) of different null subcarriers. Meanwhile, the computation complexity of calculating the powers of all null subcarriers is reduced by NUFFT. Finally, a shallow water experiment was conduct to demonstrate the performance of the proposed method. Excellent performance results are obtained in ultrawideband underwater acoustic channels with a relative bandwidth of 67%, when the transmitter and the receiver are moving at a relative speed of 5kn, which validate the method proposed.

[1] 朱维庆朱敏武岩波. 载人潜水器“蛟龙”号的水声通信信号处理. 声学学报, , 37(6) : 565-573.
[2] Xia M, Rouseff D, Ritcey J, et al. Underwater acoustic communication in a highly refractive environment using SC-FDE. IEEE Journal of Oceanic Engineering, 2014, 39(3): 491-499.
[3] Ebihara T, Mizutani K. Underwater acoustic communication with an orthogonal signal division multiplexing scheme in doubly spread channels. IEEE Journal of Oceanic Engineering, 2014, 39(1): 47-58.
[4] 程恩袁飞苏为. 水声通信技术研究进展. 厦门大学学报(自然科学版), , 50(2) : 271-275.
[5] Walree P, Otnes R. Ultrawideband underwater acoustic communication channels. IEEE Journal of Oceanic Engineering, 2013, 38(4): 678-688.
[6] S. Ahmed, H. Arslan. Estimation and compensation of doppler effect using variable subcarrier spacing in multiband UAC OFDM systems. Seattle: IEEE OCEANS 2010 Conference, 2010: 20-23.
[7] Berger C, Chen W, Zhou S, et al. A simple and effective noise whitening method for underwater acoustic orthogonal frequency division multiplexing. Journal Acoustical Society of America, 2010, 127(4): 2358-2367.
[8] Mason S, Berger C, Zhou S, et al. Receiver comparisons on an OFDM design for doppler spread channels. Bremen: IEEE OCEANS 2009 Conference, 2009: 11-14.
[9] Ma X, Tepedelenlioglu C. Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifability, algorithms, and performance. IEEE Journal on Selected Areas in Communications, 2010, 19(12): 2504-2515.
[10] Sun H, Shen W, Zhou S, et al. Joint carrier frequency offset and impulse noise estimation for underwater acoustic OFDM with null subcarriers. Hampton: IEEE OCEANS 2012 Conference, 2012: 14-19.
[11] Chen H, He H, Tang J, et al. Performance of 16 QAM-OFDM with new null subcarrier shifting in an intensity-modulated direct detection system. IEEE/OSA Journal of Optical communications and networking, 2014, 6(2): 159-164.
[12] Cotae P, Regmi S, Moskowitz S. Non-data aided Doppler shift estimation for underwater acoustic communication. Bucharest: Communications 2014 10th International Conference on, 2014: 29-31.
[13] Li B, Zhou S, Stojanovic M, et al. Multicarrier Communication over underwater acoustic channels with non-uniform doppler shifts. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198-209.
[14] Zhou W, Wang Z, Huang J, et al. Blind CFO estimation for zero-padded OFDM over underwater acoustic channels. Waikoloa: IEEE OCEANS 2011 Conference, 2011: 19-22.
[15] Lashkarian N, Kiaei S. Class of cyclic-based estimators for frequency offset estimation of OFDM systems. IEEE Transactions on Communications, Vol. 48, No. 12, pp. 2139-2149, 2000.
S. attallah, “Blind estimation of residual carrier offset in OFDM systems. IEEE Signal Processing Letters, 2012, 11(2): 216-219.
[16] Fusco T, Tanda M. Blind synchronization for OFDM systems in multipath channels. IEEE Transactions on Communications, 2009, 8(3): 1340-1348.
[17] Tureli U, Liu H. A high efficiency carrier estimator for OFDM communications. IEEE Communications Letters, 1998, 2(4): 104-106.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!