南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (6): 1268–1278.

• • 上一篇    下一篇

基于固体颗粒速度场的三维地面沉降模拟

贺小桐1,叶淑君1*,于军2,吴吉春1,龚绪龙2   

  • 出版日期:2015-11-14 发布日期:2015-11-14
  • 作者简介:(1.南京大学地球科学与工程学院,南京 210093;2. 国土资源部地裂缝地质灾害重点实验室,江苏省地质调查研究院,南京 210000)
  • 基金资助:
    基金项目:国土资源部地裂缝地质灾害重点实验室开放课题(2014003),国土资源部公益项目(201411096),江苏省自然科学基金
    (BK2012730),国家自然科学基金项目(41272259)
    收稿日期:2015-06-16
    *通讯联系人,E-mail:sjye@nju.edu.cn

Three-dimensional land subsidence modeling based on solid particle velocity

He Xiaotong1, Ye Shujun1, Yu Jun2, Wu Jichun1, Gong Xulong2   

  • Online:2015-11-14 Published:2015-11-14
  • About author:(1. Department of HydrosciencesNanjing UniversityNanjing210093China2. Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and ResourcesGeological Survey of Jiangsu ProvinceNanjing210000China)

摘要: 本文根据Helm提出的基于固体颗粒速度场的含水层运动理论进行抽水型三维地面沉降建模。通过5个算例对该模型进行了验证并展示了其在不同水文地质条件不同抽水井布置条件下的理论运用。研究表明:基于固体颗粒速度场的三维地面沉降模型可以客观反映抽水引起的含水层的三维运动。基于固体颗粒速度场的三维地面沉降模型,直接将抽水引起的含水层系统中土体的三维运动与地下水水位变化相关联,不涉及复杂的土体本构关系,相较传统的流—固耦合模型或者解耦模型所需确定的参数较少,且无需求解大型的三维位移方程,从而实现以简单的模型快速有效地模拟三维地面沉降的目的。

Abstract: In this paper, three-dimensional (3-D) land subsidence caused by groundwater extraction was simulated by using aquifer movement theory based on solid particle velocity, which was developed by Donald Helm. Two numerical experiments were conducted to verify the 3-D land subsidence models based on solid particle velocity. Three experiment demonstrated the application of models under different hydrogeological conditions and in different spatially arrangement of pumping wells. The result showed the three-dimensional motion caused by ground water pumpage. This model, based on solid particle velocity field, does not involved complex soil constitutive models. There are less parameters to be determined compared to traditional fluid-solid coupled or decoupled model, There are no large-scale three-dimensional displacement equations in this new 3-D land subsidence model, so that three-dimensional simulation of land subsidence can be achieved more efficiently by this kind of simplified model.

[1]杨勇,李国敏,窦艳兵等.抽取地下水引起地面沉降的研究现状与进展.工程勘察,2010,38(11):32-37+91-93.
[2]Calderhead A I, Martel A, Alasset P J, et al. Land subsidence induced by groundwater pumping, monitored by D-InSAR and field data in the Toluca Valley, Mexico. Canadian Journal of Remote Sensing, 2010, 36(1): 9-23.
[3]Konikow L F, Kendy E. Groundwater depletion: A global problem. Hydrogeology Journal, 2005, 13(1): 317-320.
[4]Wilson A M, Gorelick S. The effects of pulsed pumping on land subsidence in the Santa Clara Valley, California. Journal of hydrology, 1996, 174(3): 375-396.
[5]Phien-Wej N, Giao P H, Nutalaya P. Land subsidence in Bangkok, Thailand. Engineering Geology, 2006, 82(4): 187-201.
[6]Teatini P, Ferronato M, Gambolati G, et al. Groundwater pumping and land subsidence in the Emilia‐Romagna coastland, Italy: Modeling the past occurrence and the future trend. Water Resources Research, 2006, 42(1).
[7]叶淑君, 薛禹群, 吴吉春 等. 基于修正麦钦特模型的地面沉降模拟: 以上海为例. 南京大学学报( 自然科学, 2011, 47(3): 291-298.
[8]薛禹群, 吴吉春, 张云 等. 长江三角洲 (南部) 区域地面沉降模拟研究. 中国科学: D 辑, 2008, 38(4): 477-492.
[9]Helm D C. One‐dimensional simulation of aquifer system compaction near Pixley, California: 1. Constant parameters. Water Resources Research, 1975, 11(3): 465-478.
[10]Helm D C. One‐dimensional simulation of aquifer system compaction near Pixley, California: 2. Stress‐Dependent Parameters. Water Resources Research, 1976, 12(3): 375-391.
[11]LEAKE S A, GALLOWAY D L. Use of the SUB-WT Package for MODFLOW to simulate aquifer-system compaction in Antelope Valley, California, USA. IAHS-AISH publication, 2010: 61-67.
[12]王哲成, 张云. 地下水超采引起的地裂缝灾害的研究进展. 水文地质工程地质, 2012, 39(2): 88-92.
[13]王光亚, 施斌, 王晓梅, 等. 江阴南部地面沉降及地裂缝研究. 水文地质工程地质, 2009, 36(2): 117-122.
[14]薛禹群, 张云, 叶淑君, 等. 中国地面沉降及其需要解决的几个问题. 第四纪研究, 2003, 23(6): 585-593.
[15] 黄强兵, 彭建兵, 樊红卫, 等. 西安地裂缝对地铁隧道的危害及防治措施研究. 岩土工程学报, 2009 (5): 781-788.
[16]骆祖江, 曾峰, 李颖. 地下水开采与地面沉降控制三维全耦合模型研究. 吉林大学学报: 地球科学版, 2009, 39(6): 1080-1086.
[17]骆祖江, 王琰, 田小伟等. 沧州市地下水开采与地面沉降地裂缝模拟预测. 水利学报, 2013, 44(002): 198-204.
[18]骆祖江, 刘金宝, 李朗. 第四纪松散沉积层地下水疏降与地面沉降三维全耦合数值模拟. 岩土工程学报, 2008, 30(2): 193-198.
[19]Biot M A. General theory of three‐dimensional consolidation. Journal of applied physics, 1941, 12(2): 155-164.
[20]Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 1955, 26(2): 182-185.
[21]陈杰, 朱国荣, 顾阿明, 等. Biot固结理论在地面沉降计算中的应用. 水文地质工程地质, 2003, 30(2): 28-31.
[22]林政伟, 黄煌辉, 曾钧敏 等. 黏弹塑性地层下陷模式之建立与应用. 上海国土资源, 2014, 35(4): 25-30.
[23]Ferronato M, Gambolati G, Teatini P. Ill-conditioning of finite element poroelasticity equations. International Journal of Solids and Structures, 2001, 38(34): 5995-6014.
[24]Ferronato M, Janna C, Pini G. Parallel solution to ill‐conditioned FE geomechanical problems. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(4): 422-437.
[25]Gambolati G, Ferronato M, Janna C. Preconditioners in computational geomechanics: a survey. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(9): 980-996.
[26]Helm D C. A postulated relation between granular movement and Darcy’s law for transient flow. Evaluation and Prediction of Subsidence. ASCE, 1979: 417-440.
[27] Helm D C. Analysis of sedimentary skeletal deformation in a confined aquifer and the resulting drawdown. Groundwater Hydraulics, 1984: 29-82.
[28] Helm D C. Three-dimensional consolidation theory in terms of the velocity of solids. Geotechnique, 1987, 37(3): 369-392.
[29]Li J. Transient radial movement of a confined leaky aquifer due to variable well flow rates. Journal of hydrology, 2007, 333(2): 542-553.
[30]Li J. Analytic Modeling for Aquifer Radial Movement Caused by Artificial Discharge//Reston, VA: ASCE copyright Proceedings of the 2011 World Environmental and Water Resources Congress; May 22. 26, 2011, Palm Springs, California| d 20110000. American Society of Civil Engineers, 2011.
[31]Zhang L. A model for transient three-dimensional underground deformation in response to groundwater pumpage. MORGAN STATE UNIVERSITY, 2009.
[32]Li J, Ding D. Modeling 3D land movement due to groundwater pumping with a variable parameter. Global View of Engineering Geology and the Environment, 2013: 457-462.
[33]王庆良, 刘玉海. 抽水引起的含水层应变—地裂缝活动新机理. 工程地质学报, 2002, 10(1): 46-50.
[34]王庆良, 冉兴龙. 定降深抽水引起的泰斯承压含水层水平运动. 大地测量与地球动力学, 2003, 23(1): 12-16.
[35]冉兴龙. 抽注地下水引起地形变的机理及相关灾害分析研究. 西安: 长安大学, 2002.
[36]刘红云. 抽水引起含水层水平运动及与地裂缝的关系研究. 长安大学, 2007.
[37]Helm D C. Horizontal aquifer movement in a Theis‐Thiem confined system. Water Resources Research, 1994, 30(4): 953-964.
[38]Jorgensen D G. Relationships between basic soils-engineering equations and basic ground-water flow equations.Geological survey water-supply paper. Geological Survey, 1980 (2064).
[39]Riley F S. Analysis of borehole extensometer data from central California. Land subsidence, 1969, 2: 423-431.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!