南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (6): 1240–1246.

• • 上一篇    下一篇

白鳍豚超声波束形成的流固耦合机理

宋忠长1,2,张 宇1,2* ,魏 翀1,2   

  • 出版日期:2015-11-14 发布日期:2015-11-14
  • 作者简介:(1.厦门大学水声通信与海洋信息技术教育部重点实验室,厦门,361005; 2.厦门大学海洋与地球学院,厦门,361005)
  • 基金资助:
    ?基金项目:国家自然科学基金(11174240),福建省自然科学基金(2060203)
    收稿日期:2015-07-05
    *通讯联系人,E-mail:yuzhang@xmu.edu.cn

The solid-fluid coupling mechanism in Baiji’s (Lipotes vexillifer) ultrasound beam formation

 Song Zhongchang1, 2, Zhang Yu1, 2*,Wei Chong1, 2   

  • Online:2015-11-14 Published:2015-11-14
  • About author:?(1. Key Laboratory of Underwater Acoustic Communication and Marine Information Technology (Xiamen University), Ministry of Education; Xiamen, 361005, China; 2. College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China)

摘要: 研究了无指向性点声源在白鳍豚生物头部声呐系统作用下形成的声场.与传统鲸豚仿生声呐模拟中将上颌骨当作流体的模型不同,本文顾及到实际白鳍豚上颌骨的固体性质,利用流固耦合模型在仿真模拟中同时考虑了上颌骨的压力波与剪切波,并在此基础上对比了流固耦合模型下和流体模型下的白鳍豚产生的声场.结果表明,在流固耦合模型中,白鳍豚的上颌骨中存在沿着上颌骨界面传播的固体声波,而流体模型中的上颌骨则没有观察到固体声波,且固体声波的传播特点随着频率变化和上颌骨厚度变化都会发生变化.这些表明,白鳍豚生物声呐系统中上颌骨除了被广为接受的反射作用外,还起着引导产生固体表面波的作用.此外,两种模型的主瓣角和-3分贝带宽的频响特性表明剪切波的存在不会对这两项声场参数造成太大影响.这些对了解上颌骨等骨质结构在声波波束形成过程中的作用具有参考意义,为今后鲸豚仿真模拟以及生物声呐设计提供了一定的参考.

Abstract:  The present paper aims to research the acoustic fields within and outside baiji’s (Lipotes vexillifer) head through finite element method. The harmonic point sound source with a frequency range of 50 kHz to 140 kHz was used to reveal the coincidence between frequency and far-field acoustic parameters, main beam angle and -3dB width. Different from previous studies which neglected the shear wave of solid skull structures (mainly maxilla and cranium) and regarded them as fluid medium, the present work takes the shear waves of solid structures into consideration. Two sets of models, one of which allowed for the shear waves to engender in the solid skull structures and the other not, were compared to investigate what effects would be caused by the presence of shear waves. Three special frequencies, namely 70 kHz, 90 kHz and 110 kHz, were specifically chosen to obtain their sound wave propagation processes within the head. The results suggested that in the models which considered the shear waves in the solid structures, its presence mainly affected the near-field acoustic fields and merely caused slight differences in main beam angle and -3dB band width, compared to those of models which ignored the shear waves of skull structures. The reflection waves were found to change with frequency. Solid interfacial waves were observed inside the maxilla of the models considering the shear waves and its propagation patterns were also related to frequency. The solid displacements inside the maxilla indicated that the wave propagation patterns was changing with the thickness of the maxilla. Besides, in some special frequency, the sound wave scattered in the region among nasal passage, premaxillary sac and vestibular sac, resulting in weakening the sound energy propagating forward. The maxilla was thought here to play anther role as an interfacial wave guider besides its commonly accepted reflection role in beam formation. The study further indicates the biosonar emission system of baiji is complicated.

[1] Zhang Y, Gao X W, Zhang, S, et al. A biomimetic projector with high subwavelength directivitybased on dolphin biosonar. Applied Physics Letters, 2014, 105(12):123502.
[2] Wei C, Zhang Y, Au W W L, Simulation of ultrasound beam formation of baiji (Lipotes vexillifer) with a finite element model. The Journal of the Acoustical Society of America. 2014, 136: 423-429.
[3] NorrisK S,Harvey G W. Sound transmission in the porpoise head. The Journal of the Acoustical Society of America, 2005, 56(2), 659-664.
[4] Aroyan J L, Cranford T W, Kent J, et al. Computer modeling of acoustic beam formation in Delphinus delphis. The Journal of the Acoustical Society of America. 1992, 92(5):2539-2545.
[5] Soldevilla M S, McKenna M F, Wiggins S M, et al. Cuvier’s beaked whale (Ziphius cavirostris) head tissues: physical properties and CT imaging. The Journal of Experimental Biology. 2005, 208: 2319-2332
[6] Aroyan J L, Cranford T W, Kent J, et al. Computer modeling of acoustic beam formation in Delphinus delphis. The Journal of the Acoustical Society of America. 1992, 92:2539-2545.
[7] Cranford T  W, Amundin M, Norris  K  S, Functional morphology and homology in the odontocete nasal complex: implications for sound generation. Journal of Morphology, 1996, 228(3), 223-285.
[8] Wei C, Wang Z T, Song Z C, et al. Acoustic Property Reconstruction of a Yangtze Finless Porpoise’s (Neophocaena asiaeorientalis asiaeorientalis) Head Base on CT Imaging. PLoS ONE. 2015, 10(4): e0121442.
[9]荆显英,肖友芙,景荣才.白鱀豚(Lipotes vexillifer)额隆的声功能. 声学学报.1982,01:14-22..
[10]华明龙,钱振德,周开亚等.白鱀豚额隆声衰减和声速的测量. 兽类学报.1987, 02: 85-91.
[11]王丁,刘仁俊,陈佩薰,王治藩等. 白鱀豚的发声及其与环境适应的初步研究. 水生生物学报.1989,03:210-217.
[12]荆显英,肖友芙,景荣才. 白鱀豚的回声定位信号. 海洋学报(中文版).1983,01:11-18.
[13] 杜功焕, 朱哲民, 龚秀芬.声学基础(第三版). 南京:南京大学出版社,2012, 361.
[14]  Akamatsu T, Wang D, Nakamura K, et al. Echolocation range of captive and free-ranging baiji (Lipotes vexillifer), finless porpoise (Neophocaena phocaenoides), and bottlenose dolphin (Tursiops truncatus). The Journal of the Acoustical Society of America, 1998, 104(4): 2511-2516.
[15] 王丁,王克雄,刘仁俊,谌刚,卢文祥. 白鳍豚听觉灵敏度的研究. 华中理工大学学报,1988,03:55-60.
[16] 王丁,王克雄,刘仁俊,陈佩薰,谌刚,王治藩,卢文祥,杨叔子. 白鳍豚声行为及听觉灵敏度的初步研究. 湘潭大学自然科学学报,1989,02:116-121.
[17] 华元渝,张建. 白鳍豚自然群体数量及其锐减原因的分析. 南京师大学报(自然科学版),1993,04:64-71.
[18]张 飞,刘晓宙,龚秀芬.基于有限元方法的多层生物组织温度场的研究.南京大学学报(自然科学),2012,5:572-581.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!