南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (6): 1160–1165.

• • 上一篇    下一篇

粒子间耦合振动对液体中刚性球形粒子的声辐射力影响

孙秀娜,张小凤,常国栋,汪艳   

  • 出版日期:2015-11-09 发布日期:2015-11-09
  • 作者简介:(陕西师范大学 物理学与信息技术学院,陕西省超声学重点实验室,西安 710062)
  • 基金资助:
    项目基金:国家自然科学基金资助(11574191)

Influence of coupling vibration acoustic radiation force of rigid spherical particles in liquid

Sun Xiu-na,ZHANG Xiao-feng*Chang Guo-dong and Wang Yan   

  • Online:2015-11-09 Published:2015-11-09
  • About author:(College of Physics and Information Technology, Shaanxi Normal University, State Key laboratory of Shaanxi Province, Xian 710062,China)

摘要: 声学粒子操控技术在生物医学、材料科学等领域具有重要的应用,而声辐射力的控制是实现声学粒子操控的关键。本文利用时域有限差分法结合粒子表面的应力张量方程,对刚性球形粒子在调制高斯脉冲作用下的声辐射力特性进行了研究,详细分析了声场中存在其他粒子时,粒子间耦合振动对刚性球所受声辐射力的影响。仿真结果表明,由于受到周围粒子对声场的影响,刚性球形粒子的轴向和横向声辐射力都有所增加,但辐射力随频率的变化规律基本不发生改变。不同尺寸的周围粒子对刚性球形粒子声辐射力的影响不同,尺寸越大的粒子对声辐射力的影响越大。随着粒子间距离不断增大,刚性球形粒子受到的声辐射力随着距离的变化出现起伏。该研究为真实环境下粒子的声操控研究提供了理论依据

Abstract: Acoustic particle manipulation has wide applications in biomedical and material science fields. The control of acoustic radiation is the key technique for acoustic manipulation. In this paper, the property of the acoustic radiation force for a rigid spherical particle incidented by modulated Gaussian acoustic beam is studied using finite difference time domain method and the stress tensor equations. The effects of coupling vibration between two particles on acoustic radiation force of rigid spherical particle are analyzed in detail. Simulation results show that the axial and transverse acoustic radiation force are all increased, due to the influence of the coupling vibration on acoustic field when two particles are present. But the relationship between the acoustic radiation force and frequency did not change apparently. The size of the particle round the rigid spherical particle has influence on acoustic radiation force. The larger the surrounding particle is the greater effect on acoustic radiation force. The acoustic radiation force will become ups and downs when the distance between two particles is increasing. The study will provide theory foundation for acoustic manipulation in actual environment

[1] Wu R, Liu X Z, Gong X F. A study of the acoustical radiation force considering attenuation. Science China (Physics, Mechanics & Astronomy), 2013, 56 (7): 1237–1245.
[2] 胡洁, 刘云飞. 含泡胶质体层的声透射特性研究, 南京大学学报(自然科学版). 2013,49(3):394-400.
[3] Cao Ming, Yu Xiaoli, Luo Zhongyong, et al. Two-dimensional analysis of film bulk acoustic resonator by using finite-difference time-domain method. Journal of Nanjing University(Natural Sciences), 2013, 49(1): 40-45.
[4] Zhang X, Zhang G. Acoustic radiation force of a Gaussian beam incident on spherical particles in water. Ultrasound in Medical & Biology ,2012 ,38: 2007-2017.
[5] King L V. On the acoustic radiation pressure on sphere .Proceedings of the royal society of London. Series. A., 1934, 147: 212-240.
[6] Embleton T F W . Mutual interaction between two spheres in a plane sound field . Journal of the Acoustic society of America. 1962, 34:1714-1720.
[7] Crum L A . Bjerknes forces on bubbles in a stationary sound field. Journal of the Acoustic Society of America. 1975,1363-1370.
[8] Zheng X and Apfel R . Acoustic interaction forces between two fluid spheres in an acoustic field . Journal of the Acoustic Society of America. 1994, 97:2218-2226.
[9] Doinikov A A. Acoustic radiation interparticle forces in a compressible fluid. Journal of Fluid Mechanics. vol. 2001, 444:1-21.
[10] Azarpeyvand M, Alibakhshi M A, Self R. Effects of multi-scattering on the performance of a single-beam acoustic manipulation device. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2012, 59(8):1741-1749.
[11] Silva G T, Bruus H. Acoustic interaction forces between small particles in an ideal fluid. Physics Review E: Statistical, Nonlinear, and Soft Matter Physics. 2014, 90(6):063007.
[12] Yosioka K, Kawasima Y. Acoustic radiation pressure on a compressible sphere.Acoustica. 1955,5:167-173.
[13] Wei W, Thiessen D B , and P.L. Marston. Acoustic radiation force on a compressible cylinder in a standing wave . Journal of the Acoustic Society of America. 2004, 116:201-208.
[14] Hasegawa T ,Saka K , Inoue N , and Matsuzawa K . Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field . Journal of the Acoustic Society of America. 1988, 83:1770-1775.
[15] Lee C P, Wang T G . Acoustic radiation pressure . Journal of the Acoustic Society of America. 1993, 94:1099-1109.
[16] Deschamps G A. Gaussian beam as a bundle of complex rays. Electronics Letters. 1971, 7:684-685.
[17] Felsen L B. Complex rays. Philips Reports. 1975, 30:187-195.
[18] Wang Z , Zhang Z , Xu Z , et al. Space-time profiles of an ultrashort pulsed Gaussian beam. IEEE Journal of Quantum Electronics. 1997,33:566-573.
[19] Ziolkowski R W, Judkins J B . Propagation characteristics of ultrawide-bandwidth pulsed Gaussian beam . Journal of the Optical Society of America. 1992, 9:2021-2030.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!