南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (6): 1139–1147.

• • 上一篇    下一篇

单个椭球颗粒声散射数值研究

李运思,苏明旭,宋延勇,郭盼盼,蔡小舒   

  • 出版日期:2015-11-09 发布日期:2015-11-09
  • 作者简介:(上海理工大学能源与动力工程学院,上海市动力工程多相流动与传热重点实验室, 上海200093)
  • 基金资助:
    国家自然科学基金(51176128,51206113)

Numerical Research on Acoustic Scattering by a SingleProlate Spheroid Particle

Li Yunsi,Su Mingxu* ,Song Yanyong,Guo Panpan,Cai Xiaoshu   

  • Online:2015-11-09 Published:2015-11-09
  • About author:(Institute of Particle and Two-Phase Flow Measurement,University of Shanghai for Science and Technology, Shanghai, 200093, China)

摘要: 以刚性/液体颗粒和气泡为例,开展椭球颗粒声散射数值研究。运用边界元法研究刚性颗粒的声散射特性,验证该方法的可行性,计算并分析在长短轴比2:1和3:1,无因次尺寸参量ka小于10条件下刚性椭球颗粒散射声压。鉴于边界元法的局限性,对液体颗粒和气泡,则采取一种声散射函数近似计算方法。以液体椭球算例验证计算程序,之后预测椭球气泡随不同无因次尺寸参量、长短轴比、入射角的散射声压变化趋势,比较椭球和球形气泡散射声压分布,并对散射截面变化进行探讨。结果表明:对于刚性颗粒,在无因次参量ka大于4后前向散射效应占主要地位,随长短轴比值增加散射旁瓣增强。对于气泡,当椭球趋近于球体时,将本文结果与球体散射声压比较,发现入射角90度时吻合度最高。此外,当无因次参量和入射角不变时,前向散射随长短轴比的增大而增强。表现出与刚性颗粒类似的散射旁瓣随长短轴比的增加而增强,能量向前集中的特征,但散射截面减小。

Abstract: The purpose of this paper is to investigate acoustic scattering by a prolate spheroid particle. As a verification of the feasibility, the BEM(Boundary Element Method)is first introduced for calculating acoustic scattering by a rigid spherical particle, which yields consist results with the theoretical values. Then the acoustic pressure distributions of the rigid prolate spheroid particle are presented when the aspect ratio and non-dimensional parameter change. However, due to the limitation of BEM, another method is introduced for calculating acoustic scattering of weak and gas fluid, which is characterized by approximating the acoustic scattering function. To validate the accuracy, the calculated reduced target strength of weak fluid is compared with the results shown in a previous paper. Then the acoustic scattering pressure distributions of bubbles (i.e. gaseous particles)are illustrated, corresponding to varied incident angles, aspect ratiosand non-dimensional parameters. The variation trends of the scattering cross section are discussed too. In the case ofbubbles, it is found that when the incident angle and non-dimensional parameter remain unchanged, the forward scattering grows as the axial ratio increases. When the non-dimensional parameter is far below 1, the scattering pressure distributes uniformly at each angle. For rigid particles and bubbles, it is shown that the forward scattering would gradually dominate when the non-dimensional parameter exceeds 4, the scattering side lobeswill be enhanced when the axial ratio increases, while the scattering cross-section will decrease.

[1].王鹏. 燃煤电厂可吸入颗粒物排放及控制研究. 浙江:浙江大学,2008.
[2].Yonghui Hu, Xiaobin Huang, Xiangchen Qian, et al. Online particle size measurement through acoustic emission detection and signal analysis. Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. Montevideo: IEEE Press, 2014: 949-953.
[3].沈毅, 王体健, 韩永等. 南京近郊主要大气污染物的观测分析研究. 南京大学学报(自然科学),2009, 45(6): 646-656.
[4].日本工业标准. 液压流体动力. 使用消光原理自动计数测定液体样本中的颗粒污染物等级. JIS B9934-2012.
[5].熊振华, 袁鑫, 盛鑫军等. 一种微纳米颗粒分散分布的分析评估方法. 中国专利, CN103903266A. 2014-07-02.
[6].Lines RW. The Electrical Sensing Zone Method, The Coulter Principle. Liquid-and Surface borne Particle Measurement Hand Book. New York: Maecel Dekker, Inc.1996.
[7].胡边, 苏明旭, 蔡小舒. 高浓度纳米颗粒悬浮液粒径的超声在线测量方法研究. 高校化学工程学报, 2014, 28(4): 901-904.
[8].钱祖文. 声学反演法分析海中气泡的有关参数. 声学学报,1997, 22(4): 352-356.
[9].Epstein P S, Carhart R R. The Absorption of Sound in Suspensions and Emulsion: Water Fog in Air [J]. Journal of the Acoustic Society of America, 1953, 25(3): 553-565.
[10].Allegra J R, Hawley S A. Attenuation of Sound in Suspensions and Emulsions: Theory and Experiments . Journal of the Acoustical Society of America, 1972, 51(5): 1545-1564.
[11].苏明旭,任宽芳, 蔡小舒. 光复散射对消光法粒径测量的影响:复散射模型和数值模拟. 光学学报, 2004, 24(5): 696-699.
[12].郭盼盼, 苏明旭, 陈丽等. 用蒙特卡罗方法预测液固两相体系中颗粒的超声衰减. 过程工程学报,2014, 14(4): 562-567.
[13].宋延勇, 苏明旭,蔡小舒. 刚性颗粒的声散射计算及复散射场分析. 中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会.上海,2008:16-20.
[14].Keller, J.B., and Ahluwalia, D.S. Diffraction by a Curved wire. SIAM J. Appl. Math. 20, 390-405.
[15].Tran Van Nhieu, M., and Ywanne, F. Sound Scattering by Slender Bodies of Arbitrary Shape. J. Acoustic. Soc.Am.95,1726-1733.
[16].Zhen Ye. A method for Acoustic Scattering by Slender bodies. I. Theory and Verification. J. Acoustic. Soc. Am. 102(4), 1964-1976.
[17].田昌, 苏明旭, 陈孝震等. 颗粒两相流超声过程层析成像系统研究. 南京大学学报(自然科学), 2013, 49(1): 20-26.
[18].Seyeed M. Hasheminejad, and R. Sanaei. Ultrasonic Scattering by a Spheroidal Suspension Including Dissipative Effects. Journal of Dispersion Science and Technology, 28:1093-1107.
[19].陈丽. 微气泡粒径分布测量和声散射数值模拟. 上海: 上海理工大学, 2014.
[20].Gaunaaurd, G.C. Sonar Cross Sections of Bodies Partially Insonified by Finite Sound Beams. IEEE J. Ocean Eng. OE-10,213-230.
[21].王铁海, 王耀俊. 固体煤质中异质球形散射体的散射特性. 南京大学学报(自然科学),2002, 38(4): 505-513.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!