南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (5): 996–1004.

• • 上一篇    下一篇

基于合成孔径雷达图像的山区雪水当量反演

汪左1,2,3,4,冯学智1,2,3,肖鹏峰1,2,3,贺广均1,2,3,5   

  • 出版日期:2015-09-14 发布日期:2015-09-14
  • 作者简介:( 1. 江苏省地理信息技术重点实验室, 南京大学, 南京, 2 1 0 0 2 3 ;
    2. 卫星测绘技术与应用国家测绘地理信息局重点实验室, 南京大学, 南京, 2 1 0 0 2 3 ;
    3. 南京大学地理信息科学系, 南京, 2 1 0 0 2 3 ;
    4. 安徽师范大学国土资源与旅游学院, 芜湖,2 4 1 0 0 3 ;
    5. 天地一体化信息技术国家重点实验室, 航天恒星科技有限公司, 北京, 1 0 0 0 8 6 )
  • 基金资助:
    国家自然科学基金项目(41271353),国家高分辨率对地观测系统重大专项项目(95-Y40B02-9001-13/15-04)?

Retrieval of snow water equivalence using SAR data for mountainous area

Wang Zuo1,2,3,4, Feng Xuezhi1,2,3*, Xiao Pengfeng1,2,3, He Guangjun1,2,3,5   

  • Online:2015-09-14 Published:2015-09-14
  • About author:(1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology; 2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China; 3. Department of Geographic Information Science; 4. College of Territorial Resources and Tourism, Anhui Normal University;5.State Key Laboratory of Space-Ground Integrated Information Technology,Company Limited)

摘要: 雪水当量是表征积雪水资源量的重要指标,准确获取雪水当量信息对于流域水资源管理与区域气候研究具有重要意义。本文以新疆玛纳斯河流域山区典型地区为研究区,在获取RADARSAT-2精细四极化SLC产品、地面同步观测数据、数字高程数据和土地覆盖类型数据的基础上,探讨了针对山区地形与下垫面条件的EQeau模型参数优化方法,修订了模型系数,并反演获得了研究区2013年12月13日的雪水当量分布信息。结果表明:(1)在山区复杂地形与下垫面条件下,增加地形、土地覆盖类型和局部入射角作为EQeau模型的条件参数,可取得冬秋季后向散射系数比与积雪热阻间较好的拟合关系,从而修订模型系数;(2)利用系数修订后的EQeau模型和RADARSAT-2数据反演得到了研究区精度较高的雪水当量信息,进而表明利用C波段合成孔径雷达数据和EQeau模型反演山区雪水当量是有效可行的。研究成果可为山区雪水当量的定量反演提供新思路。

Abstract: Snow water equivalence (SWE) is an important indicator to characterize the amount of snow water resource. The acquisition of SWE has important significance in water resource management in river Basin and regional climate research. In this study, we chose a typical area of Manasi River Basin in Xinjiang Province as the research area, obtained the RADARSAT-2 Fine Quad-Pol SLC products, ground synchronous measurement data, digital elevation data and land cover data. Based on these data, we discussed the parameters optimization method of EQeau model for mountainous terrain and underlying surface conditions, revised the model coefficients, and eventually retrieved the SWE distribution information of study area at December 13, 2013. The results showed that: (1) Under the mountainous terrain and underlying surface conditions, increasing the topography, land cover types and local incidence angle as the parameters of EQeau model can get better fitting relationship between the backscatter coefficient ratio and snow thermal resistance; (2) the high precision of retrieval result shows that the SWE retrieval by using C-band SAR data and EQeau model for mountainous area is feasible and effective. This research can provide ideas for solving quantitative inversion of mountainous SWE.

[1].施雅风, 程国栋. 冰冻圈与全球变化. 中国科学院院刊, 1991(04):287-291.
[2]Robinson D A, Dewey K F, Heim R R. Global snow cover monitoring - an update. Bulletin of the American Meteorological Society, 1993, 74(9): 1689-1696.
[3].Shi J C, Dozier J. Estimation of snow water equivalence using SIR-C/X-SAR, part I: Inferring snow density and subsurface properties. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6): 2465-2474.
[4].Shi J C, Dozier J. Estimation of snow water equivalence using SIR-C/X-SAR, part II: Inferring snow depth and particle size. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6): 2475-2488.
[5].Shi J C. Estimation of snow water equivalence with two Ku-band dual polarization radar. IEEE IGARSS 2004: 1649-1652.
[6].Shi J C. Snow water equivalence retrieval using X and Ku band Dual-Polarization radar. IEEE IGARSS 2006: 2183-2185.
[7].李震, 郭华东, 施建成. 航天飞机极化雷达数据反演干雪密度. 科学通报, 2001(07): 594-597.
[8].Du J Y, Shi J C, Rott H. Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model. Remote Sensing of Environment, 2010, 114(5): 1089-1098
[9].Massonnet D, Feigl K L. Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics, 1998, 36(4): 441-500.
[10].Guneriussen T, Hogda K A, Johnsen H, et al. InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(10): 2101-2108.
[11].Engen G, Guneriussen T, Overrein O. New approach for Snow Water Equivalent (SWE) estimation using repeat pass interferometric SAR. IEEE IGARSS 2003: 857-859.
[12].李晖, 肖鹏峰, 冯学智等. 基于重轨InSAR的积雪深度反演方法. 冰川冻土, 2014(03): 517-526.
[13].Bernier M, Fortin J P. The potential of times series of C-band SAR data to monitor dry and shallow snow cover. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 226-243.
[14].Bernier M, Fortin J P, Gauthier Y, et al. Determination of snow water equivalent using RADARSAT SAR data in eastern Canada. Hydrological Processes, 1999, 13(18): 3041-3051.
[15].Corbane C, Somma J, Bernier M, et al. Estimation of water equivalent of the snow cover in Lebanese mountains by means of RADARSAT-1 images. Hydrological Sciences Journal, 2005, 50(2): 355-370.
[16].Chokmani K, Bernier M, Gauthier Y. Uncertainty analysis of EQeau, a remote sensing based model for snow water equivalent estimation. International Journal of Remote Sensing, 2006, 27(19): 4337-4346.
[17].Raudkivi A J. Hydrology: An observed introduction to hydrological processes and modeling. New York: Pergamon, 1979.
[18].Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil-water content - measurements in coaxial transmission-lines. Water Resources Research, 1980, 16(3): 574-582.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!