南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (5): 976–986.

• • 上一篇    下一篇

基于马尔可夫随机场模型的SAR图像积雪识别

周淑媛1,2,3,肖鹏峰1,2,3*,冯学智1,2,3,朱榴骏1,2,3,郭金金1,2,3   

  • 出版日期:2015-09-09 发布日期:2015-09-09
  • 作者简介:(1. 江苏省地理信息技术重点实验室,南京大学,南京,210023; 2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京,210023; 3. 南京大学地理信息科学系,南京,210023)
  • 基金资助:
    国家自然科学基金项目(41271353),国家高分辨率对观测系统重大专项项目(95-Y40B02-9001-13/15-04)

Recognizing snow cover from SAR image based on Markov Random Field model

Zhou Shuyuan1,2,3, Xiao Pengfeng1,2,3, Feng Xuezhi1,2,3, Zhu Liujun1,2,3,Guo Jinjin1,2,3   

  • Online:2015-09-09 Published:2015-09-09
  • About author:(1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China; 2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University, Nanjing, 210023, China; 3. Department of Geographic Information Science, Nanjing University, Nanjing, 210023, China)

摘要: 本文以新疆玛纳斯河流域2014年3月19日RADASAT-2影像为研究数据,采用马尔可夫随机场(Markov Random Field. MRF)模型分割方法进行积雪识别。MRF模型分割方法能够充分利用图像上下文信息,降低相干斑噪声对合成孔径雷达(Synthetic Aperture Radar,SAR数据的影响。通过初始K-means分割估算出MRF参数,建立先验模型和概率密度函数,利用迭代条件模式(Iterated Conditional,ICM)算法进行最大后验概率求解得到最优标记,从而识别出积雪。通过实测数据进行验证,该方法积雪识别精度达86.67%。结果表明:MRF模型分割方法的能够有效识别积雪;在地势较为平坦的地区,交叉极化HV方式下的后向散射系数与极化总功率Span的识别效果较好;在地形起伏较大的地区,HV后向散射系数的识别效果随着高程和坡度的增加而降低,极化总功率Span能够综合三种极化特征,较好地克服地形影响,提高积雪的识别精度。

Abstract: This study proposed Markov Random Field (MRF) to recognize snow cover using RADARSAT-2 data on 19 March 2014 in Manasi River Basin, Xinjiang Province. The MRF model based image segmentation method can take full advantage of the contextual information, so that reduce the influence of speckle noise on SAR data. We estimated the MRF parameters following the initial K-means segmentation, then established the prior model and the probability density function. Finally, we used Iterated Conditional Model (ICM) for solving the maximum posterior probability of the optimal label to identify the snow cover. Verified by the field survey data, the accuracy of the method to recognize snow cover is 86.67%. The results showed shat the MRF model based segmentation method can effectively recognize snow cover. In the flat areas, the backscattering coefficient under the cross-polarization HV and the polarization total power Span have the good recognition accuracy. But in the mountainous areas, the recognition accuracy of the HV backscattering coefficient decreased with the increase of elevation and slope. The polarization total power Span can integrate the three polarization characteristics to overcome the topographic effect, so that impove the recognition accuracy of snow cover

[1].曾群柱, 冯学智. 我国冰雪灾害遥感监测的前景和问题. 遥感信息, 1991 (3): 4–6.
[2].冯学智, 李文君. 雪盖卫星遥感信息的提取方法探讨. 中国图象图形学报: A 辑, 2000 (10): 836–839.
[3].Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote sensing of Environment, 1995, 54(2): 127–140.
[4].杨兴国, 秦大河, 秦翔. 冰川/积雪-大气相互作用研究进展. 冰川冻土, 2012, 34(2): 392–402.
[5].Robinson D A, Dewey K F, Heim Jr R R. Global snow cover monitoring: An update. Bulletin of the American Meteorological Society, 1993, 74(9): 1689–1696.
[6].施雅风, 程国栋. 冰冻圈与全球变化. 中国科学院院刊, 1991, 4: 287–291.
[7].Rees W G. Remote sensing of snow and ice.CRC Press, 2006.
[8].施建成, 杜阳, 杜今阳等. 微波遥感地表参数反演进展. 中国科学: 地球科学, 2012, 42(6): 814–842.
[9].Shi J, Dozier J, Rott H. Snow mapping in alpine regions with synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 152–158.
[10].Shi J, Dozier J. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sensing of Environment, 1997, 59(2): 294–307.
[11].Nagler T, Rott H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions on Geoscience and Remote Sensing,2000, 38(2): 754–765.
[12].Schellenberger T, Ventura B, Zebisch M, et al. Wet snow cover mapping algorithm based on multitemporal COSMO-SkyMed X-band SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 1045–1053.
[13].李震, 郭华东. SAR 干涉测量的相干性特征分析及积雪划分. 遥感学报, 2002, 6(5): 334–338.
[14].Strozzi T, Wegmuller U, Matzler C. Mapping wet snowcovers with SAR interferometry. International Journal of Remote Sensing, 1999, 20(12): 2395–2403.
[15].Singh G, Venkataraman G. Application of incoherent target decomposition theorems to classify snow cover over the Himalayan region. International Journal of Remote Sensing, 2012, 33(13): 4161–4177.
[16].Singh G, Venkataraman G, Yamaguchi Y, et al. Capability Assessment of Fully Polarimetric ALOS–PALSAR data for Discriminating Wet Snow from Other Scattering Types in Mountainous Regions. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1177–1196.
[17].Longépé N, Shimada M, Allain S, et al. Capabilities of full-polarimetric PALSAR/ALOS for snow extent mapping. IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2008, 4: IV–1026–IV–1029.
[18].Huang L, Li Z, Tian B S, et al. Classification and snow line detection for glacial areas using the polarimetric SAR image. Remote Sensing of Environment, 2011, 115(7): 1721–1732.
[19].张红, 叶曦, 王超等. 面向对象的高分辨率 SAR 图像处理及应用. 中国图象图形学报, 2014, 19(3): 344–357.
[20].Li S Z. Markov random field modeling in computer vision. Springer-Verlag New York, Inc., 1995.
[21].El Zaart A, Ziou D, Wang S, et al. Segmentation of SAR images. Pattern Recognition, 2002, 35(3): 713–724.
[22].Yu P, Qin A K, Clausi D A. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1302–1317.
[23].Chumsamrong W, Thitimajshima P, Rangsanseri Y. Synthetic aperture radar (SAR) image segmentation using a new modified fuzzy c-means algorithm. IEEE 2000 International Geoscience and Remote Sensing Symposium(IGRASS), 2000, 2: 624–626.
[24].Li W, Benie G B, He D C, et al. Watershed-based hierarchical SAR image segmentation[J]. International Journal of Remote Sensing, 1999, 20(17): 3377–3390.
[25].Marques R C P, Medeiros F N, Santos Nobre J. SAR Image Segmentation Based on Level Set Approach and G0A Model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 2046–2057.
[26].Ersahin K, Cumming I G, Ward R K. Segmentation and classification of polarimetric SAR data using spectral graph partitioning. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 164–174.
[27].Deng H, Clausi D A. Unsupervised image segmentation using a simple MRF model with a new implementation scheme. Pattern recognition, 2004, 37(12): 2323–2335.
[28].Clausi D A, Yue B. Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(1): 215–228.
[29].DaElia C, Ruscino S, Abbate M, et al. SAR Image Classification Through Information-Theoretic Textural Features, MRF Segmentation, and Object-Oriented Learning Vector Quantization.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(4):1116–1126.
[30].Benboudjema D, Pieczynski W. Unsupervised statistical segmentation of nonstationary images using triplet Markov fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1367–1378.
[31].Zhang P, Li M, Wu Y, et al. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model. Pattern Recognition, 2012, 45(11): 4018–4033.
[32].Wu Y, Zhang P, Li M, et al. SAR image multiclass segmentation using a multiscale and multidirection triplet Markov fields model in nonsubsampled contourlet transform domain. Information Fusion, 2013, 14(4): 441–449.
[33].林金堂, 冯学智, 肖鹏峰等. 基于MODIS数据的玛纳斯河山区雪盖年内变化特征研究. 遥感信息, 2012(02):20–24.
[34].Wang W, Yang X, Yao T. Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrological Processes, 2012, 26(2): 213–225.
[35].Lee J S, Wen J H, Ainsworth T L, et al. Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 202–213.
[36].Cao F, Hong W, Wu Y, et al. An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/α/A space and the complex Wishart clustering for fully polarimetric SAR data analysis. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3454–3467.
[37].Li S Z. Markov random field modeling in image analysis. London: Springer, 2009.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!