南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (5): 966–975.

• • 上一篇    下一篇

基于极化SAR图像的玛纳斯河流域典型区积雪识别

郭金金1,2,3,肖鹏峰1,2,3*,冯学智1,2,3,朱榴骏1,2,3,周淑媛1,2,3   

  • 出版日期:2015-09-09 发布日期:2015-09-09
  • 作者简介:(1. 江苏省地理信息技术重点实验室,南京大学,南京,210023; 2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京,210023; 3. 南京大学地理信息科学系,南京,210023)
  • 基金资助:
    国家自然科学基金项目(41271353),国家高分辨率对地观测系统重大专项项目(95-Y40B02-9001-13/15-04)

Recognizing snow from polarimetric SAR imagesin typical area of ManasiRiver Basin

Guo Jinjin1,2,3, Xiao Pengfeng1,2,3*, Feng Xuezhi1,2,3, Zhu Liujun1,2,3, Zhou Shuyuan1,2,3   

  • Online:2015-09-09 Published:2015-09-09
  • About author:(1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China; 2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University, Nanjing, 210023, China; 3. Department of Geographic Information Science, Nanjing, 210023, China)

摘要: 极化合成孔径雷达具备全天候的积雪观测能力,而且能提供丰富的极化特征用于积雪识别。本文选取2014年3月19日新疆玛纳斯河流域典型区Radarsat-2数据,首先对全极化SAR数据进行目标分解提取积雪极化特征,再利用J-M距离(Jeffreys-Matusita)进行特征选择,分析不同极化特征对积雪的可分性,最后利用最优特征集和支持向量机(Support vector machine,SVM)进行积雪识别。结果表明:Yamaguchi分解和Freeman分解的体散射分量、相干矩阵特征值和香农熵四种极化特征对积雪有较强的识别能力;多种极化特征联合识别相对于单一特征识别积雪具有较大优势,基于四种极化特征的积雪识别精度达到84%。利用极化特征进行积雪识别可获得较好效果,能够弥补可见光遥感难以识别云下积雪的不足。

Abstract: Polarimetric synthetic aperture radar sensors can not only provide an all-weather snow observational capacity, but also provide a wealth of polarization characteristics, which have the potential to discriminate the snow-cover from other natural scatters. In this paper, the data we acquired was Radarsat-2 image in typical area of Manasi River Basin, Xinjiang Province on 19 March 2014. At first, we used polarimetric decomposition methods to extract polarimetric features for snow recognition. Second, Jeffreys-Matusita (J-M) distance was applied for feature selection. We analyzed the separability of different polarimetric features to discriminatebetween snow and snow-free areas. At last, snow recognition was completed by using the best features and support vector machine (SVM). The results show that the volume scattering component of Yamaguchi and Freeman decomposition, eigenvalue of coherent matrix and Shannon entropy have strong recognition ability for snow; compared with the single feature, combining several polarimetric features for snow recognition can obtain a better result and the accuracy based on the four polarimetric characteristics reached 84%.The snow identification by polarization features can acquirebetter effect and can remedy the limitationinsnow identification by visible spectral remote sensing under the cloud condition

[1] Hoinkes H. Glaciology in the international hydrological decade. IAHS Publication, 1967 (79): 7–16.
[2]王建. 卫星遥感雪盖制图方法对比与分析. 遥感技术与应用,1999,04:29–36.
[3]李培基.高亚洲积雪分布.冰川冻土,1995, 17(4): 291–295.
[4]冯学智,李文君,史正涛等.卫星雪盖监测与玛纳斯河融雪径流模拟. 遥感技术与应用,2000,01:18–21.
[5] Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote sensing of Environment,1995,54(2): 127–140.
[6] Nagler T, Rott H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 754–765.
[7] Shi J, Dozier J.Measurements of snow-and glacier-covered areas with single-polarization SAR.Annals of Glaciology, 1993, 17: 72–76.
[8] Shi J, Dozier J. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sensing of Environment, 1997, 59(2): 294–307.
[9]李震,郭华东.SAR干涉测量的相干性特征分析及积雪划分. 遥感学报,2002,6(5): 334–338.
[10] Singh G, Venkataraman G, Yamaguchi Y, et al. Capability Assessment of Fully Polarimetric ALOS–PALSAR data for Discriminating Wet Snow from Other Scattering Types in Mountainous Regions. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1177–1196.
[11]Cloude S R, Pottier E. Areview of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518.
[12] Shimoni M, Borghys D, Heremans R, et al. Fusion of PolSAR and PolInSAR data for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(3): 169–180.
[13]Su X, He C, Feng Q, et al. A supervised classification method based on conditional random fields with multiscale region connection calculus model for SAR image. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 497–501.
[14] Singh G, Venkataraman G. Application of incoherent target decomposition theorems to classify snow cover over the Himalayan region. International Journal of Remote Sensing, 2012, 33(13): 4161–4177.
[15] Huang L, Li Z, Tian B, et al. Recognition of supraglacial debris in the Tianshan Mountains on polarimetric SAR images. Remote Sensing of Environment, 2014, 145: 47–54.
[16] Park S E, Yamaguchi Y, Singh G, et al. Polarimetric SAR Response of Snow-Covered Area Observed by Multi-Temporal ALOS PALSAR Fully Polarimetric Mode. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 329–340.
[17] 吴永辉,计科峰,李禹等. 利用SVM的极化SAR图像特征选择与分类. 电子与信息学报,2008,10:2347–2351.
[18] Topouzelis K, Psyllos A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS Journal of Photogrammetry and Remote Sensing,2012, 68: 135–143.
[19] Haddadi G A, Reza Sahebi M, Mansourian A. Polarimetric SAR feature selection using a genetic algorithm. Canadian Journal ofRemote Sensing, 2011, 37(1): 27–36.
[20] Qi Z, Yeh A G O, Li X, et al. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SARdata. Remote Sensing of Environment, 2012, 118: 21–39.
[21]Lee J S, Pottier E. Polarimetric radar imaging: from basics to applications. Boca Raton:CRC press, 2009.214–262.
[22]Trudel M, Magagi R, Granberg H B. Application of target decomposition theorems over snow-covered forested areas. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 508–512.
[23]Singh G, Venkataraman G. Application of incoherent target decomposition theorems to classify snow cover over the Himalayan region. International Journal of Remote Sensing, 2012, 33(13): 4161–4177.
[24] Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing,1998, 36(3): 963–973.
[25] Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699–1706.
[26] Bruzzone L, Roli F, Serpico S B. An extension of the Jeffreys-Matusita distance to multiclasscases for feature selection. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(6): 1318–1321.
[27]Dabboor M, Howell S, Shokr M, et al. The Jeffries–Matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data. International Journal of Remote Sensing, 2014, 35(19): 6859–6873.
[28]Mar?al A.R.S, Borges J S, Gomes J A, et al. Land cover update by supervised classification of segmented ASTER images. International Journal of Remote Sensing, 2005, 26(7): 1347–1362.
[29]Shi J, Dozier J. Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 905–914.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!