南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (5): 944–954.

• • 上一篇    下一篇

山区复杂地形条件下GF-1卫星遥感雪面反射率计算

蒋璐媛1,2,3,肖鹏峰1,2,3*,冯学智1,2,3,耶楠1,2,3,贺广均1,2,3,4,张学良1,2,3   

  • 出版日期:2015-09-09 发布日期:2015-09-09
  • 作者简介:(1.江苏省地理信息技术重点实验室,南京大学,南京,210023; 2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京,210023; 3. 南京大学地理信息科学系,南京,210023;4天地一体化信息技术国家重点实验室,航天恒星科技有限公司,北京,100086)
  • 基金资助:
    高分辨率对地观测系统国家科技重大专项项目(95-Y40B02-9001-13/15-04),国家自然科学基金项目(41271353)

Calculation of snow reflectance from GF-1 satellite imagein rugged mountain areas

Ye Nan1,2,3, He Guangjun1,2,3,4, Zhang Xueliang1,2,3   

  • Online:2015-09-09 Published:2015-09-09
  • About author:(1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University;
    2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University;
    3. Department of Geographic Information Science, Nanjing University;
    4.State Key Laboratory of Space-Ground Integrated Information Technology,Company Limited,Beijing)

摘要: 针对山区遥感影像计算雪面反射率的难点.采用各向异性校正与地形校正相结合的方法.将研究区不同坡面方向的雪面反射率归一化至平坦地表垂直观测方向上的雪面反射率.以消除地形影响其中.各向异性校正采用二向反射分布函数(Bidirectional Rellectance Distribution Function, BRDF)模型;地形校正采用山地辐射传输模型遥感影像选用新疆玛纳斯河流域的高分一号卫星(GF-1)宽幅相机数据利用同步观测的积雪光谱数据对此方法的校正能力进行验证.结果表明此方法能够消除大部分地形和大气的影响;计算的雪面反射率在非阴影区与阴影区
均与实测数据相一致;该方法可为山区积雪的光学遥感研究提供技术支撑

Abstract: Aiming at the difficulty in calculating snow reflectance from high spatial resolution image in mountain areas, in this paper, a method combined with anisotropy correction and topographic correction was proposed to covert the snow reflectance in different slope to the nadir direction on the flat surface. In the process of anisotropy correction and topographic correction, BRDF model and mountain radiation transmission model are applied to eliminate topographic effects respectively. The GF-1 WFV image of Manasi River Basin, Xinjiang Province was chosen as research data and snow spectral data achieved by synchronous observation was employed to evaluate the this method. The results show that this method could generally eliminate the influence caused by rugged terrain and atmosphere; the snow reflectance calculated by this method is in agreement with field observations in both non-shadow area and shadow area; this method can supportthe research on optical remote sensing of snow in mountain areas

[1] Nolin A, Stroeve J. The changing albedo of the Greenland ice sheet: Implications for climate change. Annals of Glaciology, 1997, 25:51–57.
[2] Knap W H, Oerlemans J. The surface albedo of the Greenland ice sheet: satellite-derived and in situ measurements in the SondreStromfjord area during the 1991 melt season. Journal of Glaciology, 1996, 42:364–374.
[3] Stoeve J, Nolin A, Steffen K. Comparison of AVHRR-derived and in situ surface albedo over the greenland ice sheet. Remote Sensing of Environment, 1997, 62(3): 262–276.
[4] Wanner W, Strahler A H, Hu B, et al. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and Algorithm. Journal of Geophysical Research, 1997, 102(14): 17143–17161.
[5] Cabot F, Dedieu G. Surface albedo from space: Coupling bidirectional models and remotely sensed measurements. Journal of Geophysical Research, 1997, 102(16): 19645–19663.
[6] Vermote E F, Saleous N EI, Justice C O, et al. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. Journal of Geophysical Research, 1997, 102(14): 17131–17171.
[7] Vermote E F, Saleous N Z E, Justice C O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sensing of Environment, 2002, 83(1-2): 97–111.
[8] Gilabert M A, Conese C, Maselli F. An atmospheric correction method for the automatic retrieval of surface reflectance from TM images. International Journal of Remote Sensing, 1994, 15(10): 2065–2086.
[9] Burgess S R, Pairman D. Bidirectional reflectance effects in NOAA AVHRR data. International Journal of Remote Sensing, 1997, 18(13): 2815–2825.
[10] Sandmeier S, Itten K I. A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Transaction Geoscience and Remote Sensing, 1997, 35(3): 708–717.
[11] Richter R. Correction of satellite imagery over mountainous terrain. Applied Optics, 1998, 37(18), 4004–4015.
[12] 闫广建, 朱重光, 郭军等. 基于模型的山地遥感影像辐射订正方法. 中国图形图像学报, 2000, 5(1): 11–15.
[13] 段四波, 闫广建. 山区遥感图像地形校正模型研究综述. 北京师范大学学报(自然科学报), 2007, 43(3): 362–366.
[14] 汪凌霄. 玛纳斯河流域山区积雪遥感识别研究. 南京大学硕士学位论文, 2012.
[15] Shepherd J D, Dymond J R. Correcting satellite imagery for the variance of reflectance and illumination with topography. International Journal of Remote Sensing, 2003, 24(17): 3503–3514.
[16] Dozier J, Outcalt S I. An approach to energy balance simulation over rugged terrain. Geographic Analysis, 1979, 11(1): 65–85.
[17] Chen Y, Hall A, Liou K N. Application of three-dimensional solar radiative transfer to mountains. Journal of Geographic Research, 2006, 111: D21111.
[18] 闻建光, 柳钦火, 肖青等. 复杂山区光学遥感反射率计算模型. 中国科学 D: 地球科学, 2008, 38(11): 1419–1427.
[19] Nicodemus F, Richmond J, Hsia J, et al. Geometrical Considerations and Nomenclature for Reflectance. US Department of Commerce, Washington D C, 1977.
[20] 曹梅盛, 李新, 陈贤章等. 冰冻圈遥感[M].北京: 科学出版社, 2006, 71.
[21] Lindsay R W, Rothrock D A. Arctic Sea Ice Albedo from AVHRR. Journal of Climate, 1994, 7: 1737–1749.
[22] Knap W H, Brock B W, Oerlemans J,et al. Comparison of Landsat TM derived and ground-based albedo of Haut Glacier d’Arolla, Switzerland. International Journal of Remote Sensing, 1999, 20(17):3293–3310.
[23] Knap W H, Reijmer C H. Anisotropy of the reflected radiation field over melting glacier ice: Measurements in Landsat TM bands 2 and 4. Remote Sensing of Environment, 1998, 65(1): 93–104.
[24] Greuell W M. S. de Ruyter de Wildt M. 1999. Anisotropic reflection by melting glacier ice: Measurements and parameterizations in Landsat TM bands 2 and 4. Remote Sensing of Environment, 1999, 70(3):265–277.
[25] Schaaf C B, Gao F, Strahler A H et al. First operation BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 2002,83(1-2): 135–148.
[26] Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space using semi-empirical BRDF models. IEEE Transactions on Geoscience And Remote Sensing, 2000, 38(2): 977–998.
[27] Privette J L, Emery W J, Schimel D S. Inversion of a vegetation reflectance model with NOAA AVHRR data. Remote Sensing of Environment, 1996, 58(2): 187-200.
[28] Stroeve J, Box J E, Gao F, et al. Accuracy assessment of the MODIS 16-day albedo product for snow : comparisons with Greenland in situ measurements. Remote Sensing of Environment, 2005,94(1): 46–60.
[29] Beisl U. Correction of bidirectional effects in imaging spectrometer data. Remote Sensing Series 37, Department of Geography, University of Zurich, 2001, 24–38.
[30] 李先华, 杨肖琪, 章皖秋等. GIS支持下地物BRDF卫星遥感研究. 科学技术与工程, 2002, 2(3): 63–34.
[31] 张玉环, 仲波, 杨锋杰等. TM/ETM和DEM数据的BRDF特征提取. 遥感学报, 2012, 16(2): 361–377.
[32] Vermote E, TanréD, DeuzéJ L et al. Second simulation of the satellite signal in the solar spectrum. IEEE Transactions on GeoScience and Remote Sensing, 1997, 35(3):675–686.
[33] Roujean J L, Leroy M, Deschamps P-Y. A Bidirectional reflectance model of the earth’s surface for the correction of remote sensing data. Journal of geophysical research, 1992,97(D18): 20455–20468.
[34] Wanner W, Li X, Strahler A H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. Journal of geophysical research, 1995,100:077–089.
[35] Gutman G. Normalization of multi-annual global AVHRR reflectance data over land surfaces to common sun-target-sensor geometry. Advances in Space Research, 1994, 14(1): 121–124.
[36] Wu A, Li Z, Cihlar J. Effects of land cover type and greenness on advanced very high resolution radiometer bidirectional reflectances: Analysis and removal. Journal of Geophysical Research, 1995,100(5), 9179–9192.
[37] Proy C, Tanre D, Deschamps P Y. Evaluation of topographic effects in remotely sensed data. Remote Sensing of Environment, 1989, 30: 21–32.
[38] Perez R, Stewart R, Arbogast C, Seals R, Scott J. An anisotropic hourly diffuse radiation model for sloping surfaces, description, performance validation, site dependency evaluation. SolarEnergy. 1986, 36: 481–497.
[39] Reeder D H. Topographic correction of satellite images theory and application. New Hampshire: Dart-mouth College, 2002.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!