南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (5): 1068–1074.

• • 上一篇    下一篇

库车坳陷新生代盐岩锶同位素特征及物质来源分析

王兴元1,尹宏伟1*,邓小林2,韦钊2   

  • 出版日期:2015-09-08 发布日期:2015-09-08
  • 作者简介:(1. 南京大学地球科学与工程学院,南京,210023;2. 中化地质矿山总局地质研究院,涿州,072750)
  • 基金资助:
    国家自然科学基金项目(40872134,41272227),国家油气重大专项(2011ZX05029-001),地质调查计划项目(1212011085517)

Strontium isotope characteristics and the origin of Cenozoic salt deposits in Kuqa basin

Wang Xing-Yuan1, Yin Hong-Wei1*, Deng Xiao-Lin2, Wei Zhao2   

  • Online:2015-09-08 Published:2015-09-08
  • About author:(1.School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China; 2.Geological Institute of Bureau of Geology, Mining of China Chemical Industry, Zhuozhou, 072750, China)

摘要: 新疆库车前陆坳陷新生代地层发育巨厚的蒸发岩沉积。本文通过对库车坳陷内11口钻井的盐岩样品进行锶同位素地球化学特征的分析,进一步研究坳陷内盐岩地层的成盐物质来源。测试结果表明,库车坳陷盐岩的锶同位素在0.708718—0.710868之间,不同时代的盐岩沉积的锶同位素组成明显不同。古近纪盐岩的锶同位素较低,大多在0.7093左右,与海水的锶同位素值接近,表明物质来源主要是海水。中新世盐岩的锶同位素多在0.7100以上,锶同位素组成介于海水和陆源盐湖之间,表明是海水和陆源水的混合的结果。推断库车坳陷古近纪早期受到海侵,渐新世海侵结束后,残余海水在中新世形成泻湖,与陆源卤水相混合并沉积成盐。

Abstract: Great thickness of evaporite strata were formed in Xinjiang Kuqa foreland basin during Cenozoic period. In this paper, we analyzed the strontium isotope geochemistry of salt which were collected from 11 drilling in Kuqa basin to provide insight into the origin of the deposit’s brine. Results show that the 87Sr/86Sr ratios of the samples from Kuqa basin varied from 0.708718 to 0.710868. There are different strontium isotope between two evaporite strata. The strontium isotopic ratios of Paleogene salt which are in the lower level, are mostly around 0.7093, consistent with the 87Sr/ 86Sr ratios of seawater, indicating that the brine of the salt deposits were mostly from seawater in Kuqa basin. Miocene salt samples show the 87Sr/ 86Sr ratios higher than seawater and lower than the continental water. This indicates that the brine of the Miocene salt deposits are from both seawater and continental water. We concluded that the Kuqa basin were suffered transgression in early Paleogene. The transgression ended in Oligocene. Residual seawater which formed lagoon in Miocene mixed with continental water to deposit into salt.

[1] Chen S, Tang L, Jin Z, et al. Thrust and fold tectonics and the role of evaporites in deformation in the Western Kuqa Foreland of Tarim Basin, Northwest China. Marine and Petroleum Geology, 2004, 21(8): 1027-1042.
[2] Wang X, Guan J S S, Hubert-Ferrari A, et al. Cenozoic structure and tectonic evolution of the Kuqa fold belt, southern Tianshan, China. AAPG Memoir, 2011, 94, 215–243.
[3] 刘成林,曹养同,杨海军,等. 库车前陆盆地古近纪—新近纪盐湖环境变迁及其成钾效应探讨. 地球学报, 2013, 34(5): 547-558.
[4] 曹养同,刘成林,杨海军,等. 新疆库车盆地古近系—新近系蒸发岩沉积旋回识别及对比. 古地理学报, 2010, 1: 005.
[5] 地质矿产部矿床地质研究所. 新疆库车盆地第三纪成盐条件及找钾远景研究报告. 北京: 地质矿产部矿床地质研究所, 1980.
[6] 郭宪璞,丁孝忠,何希贤,等. 塔里木盆地中新生代海侵和海相地层研究的新进展. 地质学报, 2002, 76(3): 299-307.
[7] McArthur J M, Burnett J, Hancock J M. Strontium isotopes at K/T boundary. Nature, 1992, 355(6355):28.
[8] Palmer M R, Edmond J M. Controls over the strontium isotope composition of river water[J]. Geochimica et Cosmochimica Acta, 1992, 56(5): 2099-2111.
[9] Kelts K. Lacaustrine basin analysis and correlation by strontium isotope stratigraphy. Abstract of 13rd International Sedimentary, 1987.
[10] Hess J., Bender M.L., Schilling J.G. Evolution of ratio of strontium 87 to strontium 86 in seawater from cretaceous to present. Science, 1986, v.231, p.979-984.
[11] Burke W.H., Denison R.E., Hetherington E.A., Koepnick R.B., Nelson H.F., Otto J.B. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 1982, v. 10, p. 516-519.
[12] Johnson T M, DePaolo D J. Interpretation of isotopic data in groundwater-rock systems: Model development and application to Sr isotope data from Yucca Mountain. Water Resources Research, 1994, 30 (5):1571~1587.
[13] 贾承造. 中国塔里木盆地构造特征与油气. 北京:石油工业出版社,1997, 232-240.
[14] 卢华复,贾东,蔡东升,等. 塔里木和西天山古生代板块构造演化. 塔里木盆地石油地质研究新进展. 北京: 科学出版社, 1996, 235.
[15] 卢华复,贾东,陈楚铭,等. 库车新生代构造性质和变形时间. 地学前缘, 1999, 6(4): 215-221.
[16] 卢华复,贾承造. 库车再生前陆盆地冲断构造楔特征. 高校地质学报, 2001, 7(3): 257-271.
[17] 汪新,贾承造,杨树锋. 南天山库车褶皱冲断带构造几何学和运动学. 地质科学, 2002, 37(3): 372-384.
[18] Yin A, Nie S, Craig P, et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 1998, 17(1): 1-27.
[19] 汤良杰,贾承造,皮学军,等. 库车前陆褶皱带盐相关构造样式. 中国科学: D 辑, 2003, 33(1): 38-46.
[20] 谭秀成,王振宇,李凌,等. 库车前陆盆地第三系沉积相配置及演化研究. 沉积学报, 2007, 24(6): 790-797.
[21] 周兴熙. 库车坳陷第三系盐膏质盖层特征及其对油气成藏的控制作用. 古地理学报, 2004, 2(4): 51-57.
[22] 唐敏,任永国,曹养同. 库车盆地古近纪—新近纪蒸发岩沉积演化特征及其资源效应初步探讨. 盐湖研究, 2012, 3: 003.
[23] 刘成林,焦鹏程,曹养同. 塔里木盆地钾盐大规模成矿条件与找矿靶区预测技术研究. 北京: 中国地质科学院矿产资源研究所, 2009.
[24] 许建新,马海州,杨来生,等. 库车盆地古近纪和新近纪构造环境与蒸发岩沉积. 地质学报, 2006, 80(2): 227-235.
[25] TAN HongBing, MA HaiZhou, LI BinKai, et al. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chinese Science Bulletin Chemistry. 2010, v.55, no.27-28, p.3181-3188.
[26] 史忠生,陈开远,何生. 东濮凹陷古近系锶, 硫, 氧同位素组成及古环境意义. 地球科学: 中国地质大学学报, 2005, 30(4): 430-436.
[27] 郑智杰,尹宏伟,张震,等. 云南江城勐野井盐类矿床Sr同位素特征及成盐物质来源分析. 南京大学学报 (自然科学), 2012, 48(6): 719-727.
[28] 贾承造等. 塔里木盆地中新生代构造特征与油气. 北京:石油工业出版社, 2004, 8-11.
[29] 阎福礼, 卢华复, 贾东, 等. 塔里木盆地库车坳陷中, 新生代沉陷特征探讨. 南京大学学报: 自然科学版, 2003, 39(1): 31-39.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!