Approach of progressive optimization calibration for Snowmelt-Runoff Model
Xie Shunping 1,2,3*, Du Jinkang 1,2,3,Feng Xuezhi4, Li Zhiguang 1,2,3
Author information+
{{custom_zuoZheDiZhi}}
About authors:
(1. Department of Geographic and Oceanographic Sciences; 2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology; 3. Collaborative Innovation Center of South China Sea Studies, Nanjing 210023)
Snowmelt Runoff Model(SRM) is a concept and semi-distributed hydrological Model and its primary parameters can express the internal response mechanism of catchment runoff to snowmelt. In this paper, we proposed a progressive calibration approach for discretized parameters optimization of SRM which is applied to simulate the snowmelt-runoff process of the Manas River basin in Xinjiang, China. The snowmelt-runoff coefficient and rainfall-runoff coefficient are determined as the two sensitive parameters to be calibrated based on the model structure parsing, and it is analyzed that the time-varying characteristic of catchment snowmelt-runoff response expressed by the model parameters which are discretized to the multiple time scale of month, half month, ten days and five days. The different object functions and optimization methods are used to calibrate the year model parameters discretized ten days scale by simulating the snowmelt-runoff process during snowmelt period from 2001 to 2012. The simulation accuracy evaluation shows that the progressive calibration method is better than the discrete time segment calibration method. Finally, oriented three objectives, the model parameters are optimized with 2001-2008 as calibration period and 2009-2012 as validation period, the results of verification simulations show that the average of efficiency coefficient is 0.87, the proposed calibration method for SRM parameters optimization are proved to be effective and the optimized model can be used to predict snowmelt-runoff process
Xie Shunping 1,2,3*, Du Jinkang 1,2,3,Feng Xuezhi4, Li Zhiguang 1,2,3.
Approach of progressive optimization calibration for Snowmelt-Runoff Model [J]. Journal of Nanjing University(Natural Sciences), 2015, 51(5): 1005-1013
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Melloh R. A synopsis and comparison of selected snowmelt algorithms. CRREL Report, 99?8, 1999: 12-13. http: / / www. crrel.usace. army. mil. [2] 张一驰,李宝林,包安明,周成虎,陈曦,张学仁. 开都河流域融雪径流模拟研究. 中国科学D辑.地球科学, 2006, 36 (增刊Ⅱ): 24~32. [3] 冯学智, 李文君, 史正涛. 卫星雪盖监测与玛纳斯河融雪径流模拟. 遥感技术与应用, 2000, 15(1): 18?21. [4] 王建,李硕.气候变化对中国内陆干旱区山区融雪径流的影响. 中国科学D辑.地球科学, 2005, 35 (7): 664~670. [5] 马虹,程国栋. SRM融雪径流模型在西天山巩乃斯河流域的应用实验. 科学通报, 2003, 48(19): 2088?2093. [6] Rango A. The response of areal snow cover to climate change in a snowmelt runoff model. Annals of Glaciology, 1997, 25: 232?236. [7] Seidel K, Ehrler C, Martinec J. Effects of climate change on water resource and runoff in an alpine basin. Hydrological Processes, 1998, 12(10): 1659?1669. [8] 李致家, 周轶, 哈布.哈其.新安江模型参数全局优化研究. 河海大学学报(自然科学版), 2004,32(4):376?379. [9] 宋星原, 舒全英, 王海波, 廖为民. SCE-UA、遗传算法和单纯形优化算法的应用. 武汉大学学报(工学版), 2009,42(1):6?9. [10] 马海波,董增川,张文明等.SCE-UA算法在TOPMODEL参数优化中的应用. 河海大学学报(自然科学版),2006, 34( 4) :361?365. [11] 陆桂华, 郦建强, 杨晓华. 水文模型参数优选遗传算法的应用. 水利学报, 2004,35 ( 2) : 50?56. [12] 张文明, 董增川, 朱成涛等. 基于粒子群算法的水文模型参数多目标优化研究. 水利学报, 2008, 39(5):528?534. [13] Li X, Weller D E, Jordan T E. Watershed model calibration using multi-objective optimization and multi-site averaging. Journal of Hydrology, 2010,380:277?288. [14] Moussu F, Oudin L, Plagnes V, et.al. A multi-objective calibration framework for rainfall–discharge models applied to karst systems. Journal of Hydrology, 2011,400:364?376. [15] Guo J , Zhou J Z, Lu J, et.al. Multi-objective optimization of empirical hydrological model for streamflow prediction. Journal of Hydrology, 2014, 511: 242?253. [16] 郭俊,周建中,周超,王光谦,张勇传.概念性流域水文模型参数多目标优化率定. 水科学进展, 2012,23(4):447?456. [17] 李弘毅, 王建. SRM融雪径流模型在黑河流域上游的模拟研究. 冰川冻土, 2008,30(5):769?775. [18] Kult J, Choi W, Choi J. Sensitivity of the Snowmelt Runoff Model to snow covered area and temperature inputs. Applied Geography,2014,55: 30?38. [19] 芮孝芳, 刘方贵, 邢贞相. 水文学的发展及其所面临的若干前沿科学问题. 水利水电科技进展,2007, 27(1):75?79. [20] 宁理科, 刘海隆, 包安明.SRM模型的不确定性分析. 石河子大学学报(自然科学版), 2012,30(6):755?760. [21] Martinec J,Rango A,Roberts R.Snowmelt Runoff Model(SRM) User’s Manual. Updated Edition 2005,WinSRM1.10. USDA Jornada Experimental Range, New Mexico State University, Las Cruces, U.S.A. [22] 黄慰军, 黄镇, 崔彩霞等.新疆雪密度时空分布及其影响特征研究. 冰川冻土, 2007, 29(1):66?72. [23] 杨大庆,张寅生,张志忠.乌鲁木齐河源雪密度观测研究.地理学报,1992,47(3):260?266. [24] 王娟,姜卉芳,穆振侠. 高寒山区气温垂直分布的估测方法研究—以玛纳斯河为例. 水资源与水工程学报, 2011,22(3):44~47.