基于铁电聚合物P(VDF-TrFE)的多级存储研究

陈 雷1,吴阳江1,李晓慧1,傅 超1,王 芳1, 2,胡志军1,2*

南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (4) : 684-691.

PDF(2160063 KB)
PDF(2160063 KB)
南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (4) : 684-691.

基于铁电聚合物P(VDF-TrFE)的多级存储研究

  • 陈 雷1,吴阳江1,李晓慧1,傅 超1,王 芳1, 2,胡志军1,2*
作者信息 +

Study on multilevel memory based on ferroelectric polymer P (VDF-TrFE)

  • Chen Lei1, Wu Yangjiang1, Li Xiaohui1, Fu Chao1, Wang Fang 1,2, Hu Zhijun 1,2*
Author information +
文章历史 +

摘要

铁电聚合物P(VDF-TrFE)具有可兼容硅基元件和可溶液加工等优点,在未来可擦写式非易失存储领域极具应用前景。构建多级存储态是提高存储密度和降低生产成本的有力途径。我们以纳米压印为主要实现手段,通过构建高度有序的纳米图案化导电基底的方式,简单快捷地实现了P(VDF-TrFE)薄膜高密度的多级存储功能。文中主要应用压电响应力显微镜(PFM)从微观上观测了图案化导电基底上P(VDF-TrFE)在电压加载后的极化变化情况,直观地证实了其在外电场的作用下可形成了三种不同的极化状态。

Abstract

With the advantages of fine compatibility with silicon elements and ease of solution process, ferroelectric polymer P(VDF-TrFE) shows great prospects in future erasable non-volatile memories. Construction of multilevel states is a powerful way to increase storage density and reduce production cost. Using nanoimprint lithography as main technical means, we successfully realize P(VDF-TrFE) based multilevel memory with high density by simply fabricating highly ordered nanopatterned conductive substrates. In this paper, piezoresponse force microscopy (PFM) are utilized for observing the bias voltage dependent polarization evolution of P(VDF-TrFE) on patterned conductive substrate, which visually confirmes our samples can form three different polarization statesits under different external electric fields. Our work provides a new route for the design of nano-scale multilevel storages.

引用本文

导出引用
陈 雷1,吴阳江1,李晓慧1,傅 超1,王 芳1, 2,胡志军1,2*. 基于铁电聚合物P(VDF-TrFE)的多级存储研究
[J]. 南京大学学报(自然科学版), 2015, 51(4): 684-691
Chen Lei1, Wu Yangjiang1, Li Xiaohui1, Fu Chao1, Wang Fang 1,2, Hu Zhijun 1,2*
.
Study on multilevel memory based on ferroelectric polymer P (VDF-TrFE)[J]. Journal of Nanjing University(Natural Sciences), 2015, 51(4): 684-691

参考文献

[1] Guo Y, Di C, Ye S, et al. Multibit storage of organic thin-film field-effect transistors. Advanced Materials, 2009, 21(19): 1954-1959.
[2] Lee J S, Kim Y M, Kwon J H, et al. Multilevel data storage memory devices based on the controlled capacitive coupling of trapped electrons. Advanced Materials, 2011, 23(18): 2064-2068.
[3] Wu C, Li F, Zhang Y, et al. Highly reproducible memory effect of organic multilevel resistive-switch device utilizing graphene oxide sheets/polyimide hybrid nanocomposite. Applied Physics Letters, 2011, 99(4) : 042108.
[4] Scott J F. Applications of modern ferroelectrics. Science, 2007, 315(5814): 954-959.
[5] Haertling G H. Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society, 1999,82(4): 797-818.
[6] Gysel R, Stolichnov I, Tagantsev A K, et al. Restricted domain growth and polarization reversal kinetics in ferroelectric polymer thin films. Journal of Applied Physics, 2008, 103(8) : 084120.
[7] Hu Z, Tian M, Nysten B, et al. Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nature Materials, 2009, 8(1): 62-67.
[8] Hu Z, Jonas A M. Control of crystal orientation in soft nanostructures by nanoimprint lithography. Soft Matter, 2010, 6(1): 21-28.
[9] Furukawa T, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions, 1989, 18(3-4): 143-211.
[10] Poulsen M, Ducharme S. Why ferroelectric polyvinylidene fluoride is special. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1028-1035.
[11] Khan M A, Bhansali U S, Cha D, et al. All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends. Advanced Functional Materials, 2013, 23(17): 2145-2152.
[12] Naber R C G, Tanase C, Blom P W M, et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Materials, 2005, 4(3): 243-248.
[13] Asadi K, De Leeuw D M, De Boer B, et al. Organic non-volatile memories from ferroelectric phase-separated blends. Nature Materials, 2008, 7(7): 547-550.
[14] Tripathi A K, van Breemen A J J M, Shen J, et al. Multilevel information storage in ferroelectric polymer memories. Advanced Materials, 2011, 23(36): 4146-4151.
[15] Zhou W, Min G, Zhang J, et al. Nanoimprint lithography: A processing technique for nanofabrication advancement. Nano-Micro Letters, 2011, 3(2): 135-140.
[16] Hu Z, Baralia G, Bayot V, et al. Nanoscale control of polymer crystallization by nanoimprint lithography. Nano Letters, 2005, 5(9): 1738-1743.
[17] Kalinin S V, Rodriguez B J, Jesse S, et al. Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning probe microscopy. Annual Review of Materials Research, 2007, 189-238.
[18] Gruverman A, Wu D, Scott J F. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Physical Review Letters, 2008, 100(9) : 097601.
[19] Guo D, Chen X, Chu X, et al. In situ observation of the nanocrystal growth and their piezoelectric performance change in P(VDF-TrFE) films by hot stage piezoresponse force microscopy. Journal of Applied Physics, 2013, 113(18) : 187210.
[20] Pertsev N A, Gainutdinov R V, Bodnarchuk Y V, et al. Blockage of domain growth by nanoscale heterogeneities in a relaxor ferroelectric Sr0.61Ba0.39Nb2O6. Journal of Applied Physics, 2015, 117(3) : 034101.
[21] Guo E J, Roth R, Herklotz A, et al. Ferroelectric 180° domain wall motion controlled by biaxial strain. Advanced materials (Deerfield Beach, Fla.), 2015, 27(9): 1615-1618.
[22] Wu Y, Li X, Weng Y, et al. Orientation of lamellar crystals and its correlation with switching behavior in ferroelectric P(VDF-TrFE) ultra-thin films. Polymer, 2014, 55(3): 970-977.
[23] Guo D, Setter N. Impact of confinement-induced cooperative molecular orientation change on the ferroelectric size effect in ultrathin P(VDF-TrFE) films. Macromolecules, 2013, 46(5): 1883-1889.
[24] Guo D, Zeng F, Dkhil B. Ferroelectric polymer nanostructures: Fabrication, structural characteristics and performance under confinement. Journal of Nanoscience and Nanotechnology, 2014,14(2): 2086-2100.
[25] Hu W J, Juo D M, You L, et al. Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films. Scientific Reports, 2014, 4.
[26] Xiao Z, Poddar S, Ducharme S, et al. Domain wall roughness and creep in nanoscale crystalline ferroelectric polymers. Applied Physics Letters, 2013, 103(11) : 112903.

基金

国家自然科学基金(51473112)

PDF(2160063 KB)

2165

Accesses

0

Citation

Detail

段落导航
相关文章

/