南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (3): 604–.

• • 上一篇    下一篇

土壤中不同形态水的化学组成研究

乔冰清,陈扣平*   

  • 出版日期:2015-04-23 发布日期:2015-04-23
  • 作者简介:(南京大学 表生地球化学教育部重点实验室, 水科学研究中心, 南京,210046)

The chemical composition in different categories of soil water

Qiao Bingqing, Chen Kouping   

  • Online:2015-04-23 Published:2015-04-23
  • About author:(Key Laboratory of Surficial Geochemistry, Ministry of Education, Center for Hydrosciences Research, Nanjing University, Nanjing, 210046, China)

摘要: 采用离心法提取土壤中的重力水、毛管水和有效膜状水,对比研究了不同形态水中的化学元素组成差异。结果表明,土壤中不同形态水的化学成分存在较大差异。其中,有效膜状水中Ni、Zn、Cr、Cu和Cd的含量比毛管水中高,但Fe、As、V和Sr的含量无明显差异,这与粘土矿物表面的重金属解吸作用及重金属迁移能力等因素有关。有效膜状水中K、Ca、Na和Mg的含量较毛管水中无明显变化。受下渗水对土壤的淋滤作用及元素迁移能力等因素的影响,重力水中Ni、Zn、Cr、Cu和Cd含量较毛管水中高。与重金属元素表现不同,土壤重力水中K、Ca、Na和Mg的含量明显低于毛管水和有效膜状水。

Abstract: This paper investigated the different element composition among gravitational water, capillary water and available hygroscopic water in soil extracted by centrifugation. The results indicated distinction among the three fractions of soil water. Available hygroscopic water had higher concentrations of Ni, Zn, Cr, Cu and Cd than those of capillary water, but the content of Fe, As, V and Sr showed no differention. It was related to desorption and migration ability of heavy metal in clay minerals. Similar concentrations of K, Ca, Na and Mg were shown between available hygroscopic water and capillary water. There were higher content of Ni, Zn, Cr, Cu and Cd in gravitational water than capillary water, which were induced by interflow leaching on soil. Gravitational water had lower concentrations of K, Ca, Na and Mg than capillary water and available hygroscopic water, which was different from the performance of .heavy metal.

[1] Tyler G, Olsson T. Conditions related to solubility of rare and minor elements in forest soils. Journal of Plant Nutrition and Soil Science, 2002, 165:594~601.
[2] Di Bonito M. Trace elements in soil pore water: A comparison of sampling methods. Ph.D dissertation, Britain:University of Nottingham, 2005
[3] 耿增超, 戴 伟. 土壤学. 北京:科学出版社, 2011, 112~114.
[4] 李 静, 梁 杏, 靳孟贵. 低渗透介质孔隙溶液的提取及其应用综述. 水文地质工程地质, 2012, 39(4):26~31.
[5] Ranger J, Marques R, Jussy J H. Forest soil dynamics during stand development assessed by lysimeter and centrifuge solutions. Forest Ecology and Management, 2001, 144: 129~ 145.
[6] Tyler G. Effects of sample pretreatment and sequential fractionation by centrifuge drainage on concentrations of minerals in a calcareous soil solution. Geoderma, 2000, 94:59~70.
[7] Pérez D V, Campos R C, Novaes H B. Soil solution charge balance for defining the speed and time of centrifugation of two Brazilian soils. Communications in Soil Science and Plant Analysis, 2002, 33: 2021~2036.
[8] 王 亚, 焦赳赳, 陈建耀. 珠江三角洲第四纪各地层生成与存储天然铵能力的探讨与对比. 生态环境学报, 2013, 22(12): 1909~1915.
[9] 朱 江, 周永欣, 葛 虹等. 离心力对制备沉积物间隙水中化合物浓度的影响. 水生生物学报, 2003, 27(5):487~491.
[10] Azcue J M, Cheam V, Lechner J. Effects of centrifugation speed on measurements of thallium in sediment pore water. International Journal of Environment Analytical Chemistry, 1997, 66:61~70.
[11] Edmunds W M, Bath A H. Centrifuge extraction and chemical analysis of interstitial waters. Environmental Science and Technology, 1976, 10: 467~472.
[12] 尚熳廷, 冯 杰, 刘佩贵等. SWCC测定时吸力计算公式与最佳离心时间的探讨. 河海大学学报(自然科学版), 2009, 37(1):12~15.
[13] Hendry M J, Wassenaar L I. Controls on the distribution of major ions in pore waters of a thick surficial aquitard. Water Resources Research, 2000, 36(2):503~513.
[14] 杨 涛, 蒋少涌, 葛 璐等. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义. 科学通报, 2009, 54: 3231~3240.
[15] Jiao J J, Wang Y, Cherry J A, et al. Abnormally high ammonium of natural origin in a coastal aquifer–aquitard system in the Pearl River Delta, China. Environmental Science and Technology, 2010, 44:7470~7475.
[16] Wang Y, Jiao J J, Cherry J A. Occurrence and geochemical behaviour of arsenic in a coastal aquifer-aquitard system of the PearlRiver Delta, China. Science of the Total Environment, 2012, 427/428:286~297.
[17] Moreno-Jime′nez E, Penalosa J M, Manzano R, et al. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials, 2009, 162: 854~859.
[18] Beesley L, Moreno-Jime′nez E, Clemente R. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution, 2010, 158:155~160.
[19] Shimaoka T, Miyawaki K, Hanashima M, et al. Heavy metal elution characteristics from municipal solid waste scrubber residue by a centrifugation method. Waste Materials in Construction, 2000(1): 595~603.
[20] 国家技术监督局. 地下水质量标准. GB/T 14848—1993.
[21] 付红波, 李取生, 骆承程等. 珠三角滩涂围垦农田土壤和农作物重金属污染. 农业环境科学学报, 2009, 28(6):1142~1146.
[22] Ololade I A, Lajide L, Ololade O O. Metal partitioning in sediment pore water from the Ondo coastal region, Nigeria. Toxicological & Environmental Chemistry, 2011, 63: 1098~1110.
[23] Winger P V, Lasier P J, Jackson B P. The influence of extraction procedure on ion concentrations in sediment pore water. Archives of Environment Contamination and Toxicology, 1998, 35: 8~13.
[24] 刘东盛, 杨忠芳, 夏学齐等. 成都经济区天降水与下渗水元素地球化学特征及土壤元素输入输出通量. 地学前缘, 2008, 15(5): 74~81.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!