南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (3): 524–.

• • 上一篇    下一篇

南京市细颗粒物来源解析研究

陈璞珑1,王体健1*,胡 忻2
  

  • 出版日期:2015-04-23 发布日期:2015-04-23
  • 作者简介:(1.南京大学大气科学学院,南京,210093;2.南京大学现代分析中心,南京,210093)
  • 基金资助:
    国家重点基础研究发展计划(2014CB441203,2011CB403406),国家科技部公益行业(环保)科研专项(201409008),科技支撑项目(2011BAK21B03),国家科技部公益行业(气象)科研专项(GYHY201206011-1),国家人才培养基金(J1103410)

A study of chemical mass balance source apportionment of fine particulate matter in Nanjing

Chen Pulong1Wang Tijian1*Hu Xin2   

  • Online:2015-04-23 Published:2015-04-23
  • About author:(1.School of Atmospheric Sciences, Nanjing University, Nanjing,210093,China; 2.Modern Analysis Center , Nanjing University , Nanjing,210093,China)

摘要: 细颗粒物现已成为南京大气中的首要污染物,研究细颗粒物的来源可以为大气环境管理和污染控制对策提供科学依据。本文通过对南京市2011年8月(8.4-8.17)、11月(10.28-11.16)、2012年1月(1.19-1.31)、3月(3.12-3.31)草场门、固城湖环境监测子站的PM2.5观测样品和各排放源源样品进行浓度和化学成分的特征分析比较,结合化学质量平衡模型(CMB)解析南京城区和郊区细颗粒物来源,确定不同排放源对细颗粒物浓度的贡献率。结果表明,草场门、固城湖两观测站点PM2.5浓度四个月平均值分别为100.9±45.2μg/m3、85.4±37.8μg/m3,月均浓度值在8月最低,分别为82.7μg/m3、50.4μg/m3,草场门月均浓度在3月最高,为134.7μg/m3,固城湖月均浓度在1月最高,为94.3μg/m3。细颗粒物最主要的化学成分是NO3-、SO42-、OC、NH4+、EC、Ca、Cl-、K、Fe、Al、Na等,各类排放源分别为煤烟尘、冶炼尘、土壤尘、汽车尾气、二次气溶胶。草场门、固城湖两个站点细颗粒物中贡献最大的源为二次无机盐气溶胶(63.9%、65.1%),其次为汽车尾气(12.5%、16.5%)。可见,为了减轻南京细颗粒物浓度水平,工业源和汽车尾气应为控制重点。

Abstract: Particle matter (PM) has become the primary air pollutant in Nanjing, recently. Investigation on particle matter source apportionment using Chemical Mass Balance(CMB) model could provide a theoretical basis for air quality management and air pollution control for the city. In this paper, the characteristics of PM2.5 chemical composition at Caochangmen (CCM) and Guchenghu (GCH) in Nanjing at 2011.8, 2011.11, 2012.1, 2012.3, respectively and atmospheric PM emissions samples were analyzed. Results indicate that four months average concentrations of PM2.5 at CCM and GCH are 100.9±45.2μg/m3 and 85.4±37.8μg/m3, respectively. The mass concentrations are both lowest in August. They are 82.7μg/m3 and 50.4μg/m3, respectively at CCM and GCH. PM2.5 of CCM is the highest in March with the average concentration reaching 134.7μg/m3. The highest value of PM2.5 at GCH was found in January reaching 94.3μg/m3. The main chemical compositions of PM2.5 are NO3-, SO42-, OC, NH4+, EC, Ca, Cl-, K, Fe, Al and Na. The major emission sources are coal dust, smelting dust, soil dust, vehicle exhaust, secondary aerosols and sea salt. Results from source apportionment show that in fine particulate matter, the sources with large contribution are the secondary inorganic aerosols (63.9%, 65.1%) and vehicle exhaust (12.5%、16.5%) at CCM and GCH, respectively. Therefore, in order to reduce the PM2.5 level in Nanjing, it is necessary to control emissions from industry and transportation.

[1] Miller M S,Feiedlander A. Chemical element balance for the pasadena aerosol. Journal of Colloid and Interface Science, 1972,39: 165-176.
[2] Cooper,Watson. Receptor oriented methods of air particulate source apportionment. Journal of the Air Polltion Control Association, 1980, 30(19):1116-1125.
[3] Britt,Luecke. Estimation of parameters in nonlinear implicit models. Technometrics, 1973, 15(2):233-247.
[4] Antony Chen L W, John G Watson, Judith C Chow. Chemical mass balance source apportionment for combined PM2.5 measurements from U.S. non-urban and urban long-term networks. Atmospheric Environment, 2010, 44:4908-4918.
[5] Zhang Y F, Xu H, Tian Y Z. The study on vertical variability of PM10 and the possible sources on a 220 m tower, in Tianjin China. Atmospheric Environment, 2011, 45:6133-6140.
[6] Zhang T, Cao J J, Tie X X. Water-soluble ions in atmospheric aerosols measured in Xi’an, China: seasonal variations and sources. Atmospheric Research, 2011, 102:110-119.
[7] Dhananjay K Deshmukh, Manas K Deb, Ying I Tsai. Water soluble ions in PM2.5 and PM2.1 aerosols in Durg City, Chhattisgarh, India. Aerosol and Air Quality Research, 2011, 11:696-708.
[8] Guor-Cheng Fang, Shih-Chieh Lin, Shih-Yu Chang. Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in Central Taiwan. Journal of Environment Management, 2011, 92:1520-1527.
[9] Galindo N, Yubero E, Nicolas J F. Water-soluble ions measured in fine particulate matter next to cement works. Atmospheric Environment, 2011, 45:2043-2049.
[10] 郭照冰,包春晓,陈天蕾. 北京奥运期间气溶胶中水溶性无机离子浓度特征及来源解析.大气科学学报,2011,34(6):683-687.
[11] 毛华云,田 刚,黄玉虎.北京市大气环境中硫酸盐、硝酸盐粒径分布及存在形式.环境科学,2011,32(5):1237-1241.
[12] 李伟芳,白志鹏,史建武.天津市环境空气中细颗粒的污染特征与来源.环境科学研究,2010,23(4):394-400.
[13] 黄辉军,刘红年,蒋维楣.南京市PM2.5物理化学特性及来源解析.气候与环境研究,2006,11(6):713-722.
[14] 包 贞,冯银厂,焦 荔等.杭州市大气PM2.5和PM10污染特征及来源解析.中国环境监测,2010,26(2):44-48.
[15] 黄辉军,刘红年,蒋维楣.南京主城区大气颗粒物来源探讨.气象科学,2007,27(2):162-168.
[16] 包 贞,冯银厂,焦 荔.杭州市大气PM2.5和PM10污染特征及来源解析.中国环境监测,2010,26(2):44-48.
[17] Cheng Y, Zou S C, Lee S C. Charateristics and source apportionment of PM1 emissions at a roadside station. Journal of Hazardous Materials, 2011, 195:82-91.
[18] Kebin He, Fumo Yang, Yongliang Ma,et al. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 2001,35: 4959-4970
[19] Xu L L, Chen X Q, Chen J S,et al. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research, 2012, 104-105: 264-272.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!