南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (1): 73–86.

• • 上一篇    下一篇

邹平雪山二长岩年代学和Sr-Nd同位素研究及成因探讨

王 浩,徐兆文*,李海勇,赵增霞,陆建军
  

  • 出版日期:2015-01-04 发布日期:2015-01-04
  • 作者简介:(内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,南京,210023)
  • 基金资助:
    国家自然科学基金(41173050),教育部博士学科点专项基金(20110091110043)

Geochronology, Sr-Nd isotope and genesis of the Xueshanmonzonite, Zouping County, Shandong Province


Hao Wang, Zhaowen Xu*, Haiyong Li, Zengxia Zhao, Jianjun Lu   

  • Online:2015-01-04 Published:2015-01-04
  • About author:(State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing,210023, China)

摘要: 邹平雪山二长岩岩体位于华北克拉通东南部邹平火山岩盆地内.本文通过对雪山二长岩年代学、岩石地球化学、同位素地球化学的研究,探讨邹平地区早白垩世岩浆作用.LA-ICP-MS锆石U-Pb加权平均年龄为128.5±1.2 Ma,属于燕山晚期岩浆活动产物.二长岩具有富碱(K2O+Na2O=9.92~10.35 wt.%)、富镁(Mg#=42.89~51.22),准铝质(ACNK=0.78~0.82)和钾玄质;轻稀土富集、重稀土亏损[(La/Yb)N=5.19~7.19],无明显Eu异常(δEu=0.82~0.99);大离子亲石元素元素(Rb,Ba等)富集,高场强元素(Nb、Ta、Ti等)亏损等特征.二长岩具有较低的(87Sr/86Sr)i比值(0.705188~0.705661),?Nd(t)值(–14.79~–13.46)和老的两阶段模式年龄TDM2(2.02~2.12 Ga).早白垩世俯冲的太平洋板片后撤拉张,软流圈上涌加热鲁西EM1型富集岩石圈地幔,岩石圈地幔部分熔融产生的玄武质岩浆,经橄榄石、辉石结晶分异形成了雪山二长岩. 

Abstract: A combined study of petrochemistry, Sr-Nd isotopes and zircon U-Pb ages of the late Mesozoic Xueshanmonzonite in the Zouping volcanic basin, North China Craton (NCC), were carried out. The zircon U-Pb dating results reveal that the Xueshanmonzonite was emplaced in Early Cretaceous (128.5±1.2 Ma). The Xueshanmonzonite is alkaline (K2O+Na2O=9.92~10.35 wt.%), magnesium-rich (Mg#=42.89~51.22), metaluminous (ACNK=0.78~0.82) and shoshonitic in composition, and enriched in large ion lithophile elements (e.g., Rb and Ba) and light rare earth elements ((La/Yb)N=5.19~7.19), depleted in high field strength elements (e.g., Nb, Ta, and Ti) and heavy rare earth elements, and have no Eu anomalies (δEu=0.82~0.99). Relatively low (87Sr/86Sr)i ratios (0.705188~0.705661) and ?Nd(t) values (–14.79~–13.46) indicate that the monzonitic magma was likely to be derived from partial melting of the Luxi EM1-type enriched lithospheric mantle and underwentfractional crystallization of olivine and pyroxene. The tectonic triggered the late Mesozoic large scale magmatism in eastern NCC, might be accompanied with the roll-back of the subductedpaleo-Pacific plate.

[1] 山东省地质矿产局. 山东省区域地质志. 北京:地质出版社, 1991:1-572.
[2] 山东省地质矿产勘查局第一地质矿产勘查院. 山东省邹平火山岩盆地(后程地区)铜矿普查报告. 2002.
[3] Huang X L, Zhong J W, Xu Y G. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochimica et Cosmochimica Acta, 2012, 96: 193-214.
[4] Yang Q L, Zhao Z F, Zheng Y F, Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 2012: 146–147, 164-182.
[5] Guo F, Fan W M, Wang Y J, et al. Late Mesozoic mafic intrusive complexes in North China Block: constrains on the nature of subcontinental lithospheric mantle. Physics and Chemistry Earth, 2001, 26(9-10): 759-771.
[6] Guo F, Fan W M, Wang Y J, et al. Geochemistry of late Mesozoic mafic magmatism in west Shandong Province, eastern China: characterizing the lost lithospheric mantle beneath the North China Block. Geochemical Journal, 2003, 37: 63-77.
[7] 李全忠, 谢 智, 陈江峰等. 济南和邹平辉长岩的Pb-Sr-Nd同位素特征和岩浆源区中下地壳物质贡献. 高校地质学报, 2007, 13(2): 297-310.
[8] Lan T G, Fan H R, Hu F F, et al.Multiple crust-mantle interactions for the destruction of the North China Craton: GeochemicalandSr–Nd–Pb–Hf isotopic evidence from the Longbaoshan alkaline complex. Lithos, 2011, 122(1–2): 87–106.
[9] Lan T G, Fan H R, Santosh M, et al. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: Implication for crust–mantle interaction and post-collisional magmatism. Lithos, 2012, 140–141: 183–199.
[10] Zhang H F, Sun M, Zhou X H, et al. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications.Lithos, 2005, 81(1–4): 297–317.
[11] Yang D B, Xu W L, Pei F P, et al. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr–Nd–Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 2012, 136–139: 249–260.
[12] Liu D Y, Nutman A P, Compston W, et al. Remnants of ≥3800 Ma crust in the Chinese part of the Sino–Korean craton. Geology, 1992, 20(4): 339–342.
[13] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 2005, 136(2): 177–202.
[14] Zhao G C, Wilde S A, Cawood P A, et al.Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research, 2001, 107(1–2): 45–73.
[15] 张锡明, 张岳桥, 季 玮. 山东鲁西地块断裂构造分布模式与中生代沉积-岩浆-构造演化序列. 地质力学学报, 2007, 13(2): 163–172.
[16] Qiu J S, Xu X S, Lo C H. Potash-rich volcanic rocks and lamprophyres in western Shandong Province: 40Ar–39Ar dating and source tracing. Chinese Science Bulletin, 2002, 47(2): 91–99.
[17] Ling W L, Duan R C, Xie X J, et al.Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China Craton. Lithos,2009, 113(3–4): 640–658.
[18] Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 2002, 144(2): 241–253.
[19] 高剑锋, 陆建军, 赖鸣远等. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学), 2003, 39 (6):844–850.
[20] 濮 巍,赵葵东,凌洪飞等. 新一代高精度高灵敏度的表面热电离质谱仪(Triton TI)的Nd同位素测定. 地球学报, 2004, 25(2):271–274.
[21] 濮 巍,高剑锋,赵葵东等. 利用DCTA和HIBA快速有效分离Rb–Sr、Sm–Nd的方法. 南京大学学报(自然科学), 2005, 41(4): 445–450.
[22] Gerstenberger H, Haase G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chemical Geology, 1997,136(3–4): 309–312.
[23] Jackson S E, Pearson N J, Griffin W L, et al.The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,2004, 211(1–2): 47–69.
[24] Black L P,Gulson B L. The age of the Mud Tank carbonatite, Strangways Range, Northen Territory: BMR. Journal of Australian Geology and Geophysics, 1978, 3(5):227–232.
[25] Irvine T N, Baragar W R A.A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 1971, 8(5): 523–548.
[26] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63–81.
[27] Jiang Y H, Jin G D, Liao S Y, et al.Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassicgranitoids from the Qinlingorogen, central China: Implications for a continental arcto continent-continent collision. Lithos, 2010, 117(1–4): 183–197.
[28] McDonough W F, Sun S S. The composition of the Earth. Chemical Geology, 1995, 120(3–4): 223–253.
[29] Lugmair G W, Marti K.Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary ScienceLetters,1978, 39(3):349–357.
[30] 林景仟,谭东娟,金 烨. 鲁西地区中生代火成活动的40Ar/39Ar年龄. 岩石矿物学杂志, 1996, 15(3):213–220.
[31] Jahn B M, Auvray B, Shen Q H, et al.Archean crustal evolution in China: The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research, 1988, 38(4): 381–403.
[32] Jahn B M, Wu F Y, Lo C H, et al. Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 1999, 157(1–2): 119–146.
[33] Xu Y G, Ma J L, Huang X L, et al. Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences, 2004, 93(6): 1025–1041.
[34] Zindler A, Hart S. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 1986,14: 493–571.
[35] Huang X L, Xu Y G, Liu D Y. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: implication for a heterogeneous lower crust beneath the Sino-Korean craton. Geochimica et Cosmochimica Acta, 2004, 68(1): 127–149.
[36] Zhang H F, Sun M. Geochemistry of Mesozoic basalts and mafic dikes, southeastern North China Craton, and tectonic implications. International Geology Review, 2002, 44(4): 370–382.
[37] Furukawa Y, Tatsumi Y. Melting of a subducting slab and production of high–Mg andesite magmas: unusual magmatism in SW Japan. Geophysical Research Letters, 1999, 26: 2271–2274.
[38] Kamei A, Owada M, Nagao T, et al. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: evidence from clinopyroxene and whole rock compositions. Lithos, 2004, 75(3–4): 359–371.
[39] Yogodzinski G M, Kay R W, Volynets O N, et al.Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 1995, 107(5): 505–519.
[40] Foley S F, Jackson S E, Fryer J D, et al. Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LA–ICP–MS. Geochimica et Cosmochimica Acta, 1996, 60(4): 629–638.
[41] Ionov D A, O’Reilly S Y, Griffin W L. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology, 1997, 141(3–4): 153–184.
[42] Grégoire M, Lorand J P, O’Reilly S Y, et al.Armalcolite–bearing, Ti–rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: implications from the oceanic mantle budget of high field strength elements. Geochimica et Cosmochimica Acta, 2000, 64(4): 673–694.
[43] Adan J D, Green T H, Sie S H. Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content. Chemical Geology, 1993, 109(1–4): 29–49.
[44] LaTourette T, Hervig R L, Holloway J R. Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters, 1995, 135(1–4): 13–30.
[45] Liang J L, Ding X, Sun X M, et al.Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 2009, 268(1–2): 27–40.
[46] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system. Chemical Geology, 1995, 120(3–4): 347–359.
[47] Rudnick R L, Barth M, Horn I, et al. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 2000, 287: 278–281.
[48] Foley S, Tiepolo M, Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 2002, 417: 837–840.
[49] Tiepolo M, Vannucci R, Oberti R, et al.Nb and Ta incorporation and fractionation in titanianpargasite and kaersutite: crystalchemical constraints and implications for natural systems. Earth and Planetary ScienceLetters, 2000, 176(2): 185–201.
[50] Jörg A, Pfänder J A, Münker C, et al.Nb/Ta and Zr/Hf in ocean island basalts-Implications for crust–mantle differentiation and the fate of Niobium.Earth and Planetary Science Letters, 2007, 254(1–2): 158–172.
[51] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 2000, 165(3–4): 197–213.
[52] Münker C, Pfänder J A,Weyer S, et al. Evolution of planetarycores and the Earth–Moon system from Nb/Ta systematics. Science, 2003, 301: 84–87.
[53] Dupuy C, Liotard J M, Dostal J. Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta, 1992, 56(6): 2417–2423.
[54] Rudnick R L, McDonough W F, Chapell B W. Carbonatitemetasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth and Planetary ScienceLetters, 1993, 114(4): 463–475.
[55] Furman T, Graham D. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Developments in Geotectonics, 1999, 48: 237–262.
[56] 李海勇,徐兆文,陆现彩等. 鲁西邹平盆地中生代火山岩的演化:对地幔源区的约束. 岩石学报, 2008, 24(11): 2537–2547
[57] Zhang H F, Sun M, Zhou M F, et al. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr–Nd–Pb isotopic systematics of mafic igneous rocks. Geological Magazine, 2004, 141(1): 55– 62.
[58] Ratschbacher L, Hacker B R, Webb L E, et al.Wenk, Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research, 2000, 105: 13303–13338.
[59] Yang J H, Wu F Y, Chung S L, et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geology Society of America Bulletin, 2007, 119(11–12): 1405–1414.
[60] 王德滋,赵广涛,邱检生.中国东部晚中生代A型花岗岩的构造制约. 高校地质学报, 1995, 1(2): 14– 21.
[61] Guo F, Fan W M, Wang Y J, et al.Petrogenesis and tectonic implications of Early Cretaceous high–K calc-alkaline volcanic rocks in the Laiyang Basin of the Sulu Belt, eastern China. Island Arc, 2005, 14(2): 69–90.
[62] Wang Y H, Houseman G A, Lin G, et al. Mesozoic lithospheric deformation in the North China block: numerical simulation of evolution from orogenic belt to extensional basin system. Tectonophysics, 2005, 405(1–4): 47–63.
[63] Zhao Z F, Zheng Y F. Remelting of subducted continental lithosphere: petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Science in China Series D, 2009, 52(9): 1295–1318.
[64] Jiang Y H, Jiang S Y, Ling H F, et al.Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 2010, 100(3–4): 127–151.
[65] Ma L, Jiang S Y, Dai B Z, et al.Multiple sources for the origin of Late Jurassic Linglongadakitic granite in the Shandong Peninsula, eastern China: Zircon U–Pbgeochronological, geochemical and Sr–Nd–Hf isotopic evidence. Lithos, 2013, 162–163: 251–263.
[66] Sun W D, Ding X, Hu Y H, et al.The golden transformation of the Cretaceous plate subduction in the west Pacific.Earth and Planetary ScienceLetters, 2007, 262(3–4): 533–542.
[67] Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China.Earth and Planetary ScienceLetters, 2005, 233(1–2): 103–119.
[68] Chen L H, Zhou X H. Subduction–related metasomatism in the thinning lithosphere: Evidence from a composite dunite–orthopyroxenite xenolith entrained in Mesozoic Laiwu high–Mg diorite, North China Craton. Geochemistry GeophysicsGeosystems, 2005, 6(6): 1–20.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!