南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (5): 667–.

• • 上一篇    下一篇

新洋港河口悬沙特征与再悬浮过程

李明亮1,2, 杨 旸1*, 项 明3, 朱国贤3, 陆体成4, 周俭华4, 高建华1, 汪亚平1   

  • 出版日期:2014-09-12 发布日期:2014-09-12
  • 作者简介: (1. 南京大学地理与海洋科学学院南京210023; 2. 江苏省地质调查研究院南京210018; 3. 盐城市水利工程管理处, 盐城,224002; 4. 盐城市四港港道监测管理所, 盐城,224057)
  • 基金资助:
    海洋公益性行业科研专项(201105006),中央高校基本科研业务费重点项目培育计划“开敞型潮滩沉积动力过程与地貌演化模式”,国家自然科学基金项目

Characteristics of suspended sediment and resuspension processes in Xinyanggang Estuary

Li Mingliang1,2, Yang Yang1, Xiang Ming3, Zhu Guoxian3, Lu Ticheng4, Zhou Jianhua4, Gao Jianhua1, Wang Yaping1   

  • Online:2014-09-12 Published:2014-09-12
  • About author:(1. 210023; 2. 210018 3. , ,224002; 4. , ,224057) g/LL5-10 m70% (1. School of Geographic and Oceanic Sciences, Nanjing University, Jiangsu Nanjing,210023, China; 2. Geological Survey of Jiangsu Province, Jiangsu Nanjing,210018, China; 3. Waterworks Administration of Yancheng City, Yancheng,224002, China; 4. Four Harbors and Channels Survey Administration of Yancheng City, Yancheng,224002, China)

摘要: 中小型入海河口由于数量众多、分布广泛,其沉积动力学特征对于河口区的地貌环境演化等具有重要意义。新洋港河口是江苏淤泥质平原海岸上的典型中小型建闸河口,本文通过在新洋港河口进行的高精度三船同步现场观测,研究了河口的悬沙特征及沉积物对再悬浮作用的响应状况。结果表明,潮周期内悬沙浓度变化显著,涨潮及开闸放水期间悬沙浓度较大,最大平均悬沙浓度达1.45 g/L;而在其它时间段内悬沙浓度较小,从口门至闸门悬沙浓度有逐渐增大趋势。潮周期内典型时刻悬沙垂向分布符合“L型”分布特点,表、底层悬沙浓度差异显著。在有径流下泻期间,悬沙浓度垂向变化较为均匀,水体混合作用显著。悬沙平均粒径介于5-10 μm;悬沙组分以粉砂为主,平均含量在70%以上。闸下及入海口区域再悬浮作用显著,最大再悬浮通量为10-4-10-3 kg/m2s,从口门至河闸呈递减趋势;同时,悬沙出现粗化现象,砂组分含量增加。

Abstract: Characteristics of sediment dynamics in many small and medium sized estuaries have great significance for geomorphologic evolution. Xinyanggang Estuary is a typical small and medium sized estuary with sluice gate which locates on the muddy coast of Jiangsu Plain. This article studies the characteristics of suspended sediment and its response to sediment resuspension through the data from field observation of three mooring ships in Xinyanggang Estuary. The result shows that the suspended sediment concentration(SSC) changes significantly during tides, SSC during ebb tides and the opening of tidal sluice is higher than other periods, and increases gradually from estuary to the tidal sluice, and the highest average SSC reaches to 1.45 g/L . The vertical distribution of SSC during typical time of tides keeps with ‘L type’ , which the SSC between surface and bottom differentiates greatly. The water mixes well and vertical SSC changes evenly during the period of fresh water runoff. The average grain size of suspended sediment ranges from 5 μm to 10 μm, and the main component is silt with an average percentage higher than 70. There exists bottom sediment resuspension during tides and the highest resuspension flux ranges from 10-4 kg/m2s to 10-3 kg/m2s, which decreases gradually from the estuary to the tidal sluice. The sediment grain size coarsens differently during the resuspension and the content of sand would increase in the component. Part of the suspended sediment of station S1 and S3 comes from bottom sediment resuspension while with that derives from advection transport in station S2.

[1] 沈焕庭. 我国河口水文研究的回顾与建议. 水科学进展, 1991, 2(3): 201 ~205.
[2] 杨 旸, 汪亚平, 高建华等. 长江口枯季水动力悬沙特征与再悬浮研究. 南京大学学报,2006, 42(6): 643~655.
[3] 汪亚平, 高建华, 潘少明. 长江河口区边界层参数的观测与分析. 海洋地质动态,2006 , 22(7): 16~20.
[4] 汪亚平, 潘少明,Wang H V等. 长江口水沙入海通量的观测与分析. 地理学报, 2006, 61(1): 35~46.
[5] 高建华, 汪亚平, 潘少明等. 长江口悬沙动力特征与输运模式. 海洋通报, 2005, 24(5): 8~15.
[6] 时 钟, 陈伟民. 长江口北槽最大浑浊带泥沙过程. 泥沙研究, 2000 (1): 28~29.
[7] 夏小明, 李 炎, 杨 辉等. 枯季珠江河口悬浮泥沙絮凝沉降特征的观测与分析. 海洋学研究, 2006, 24(1): 6~18.
[8] 陈耀泰. 珠江口现代沉积速率与沉积环境. 中山大学学报, 1992, 31(2): 100~107.
[9] 林祖亨. 珠江口水域的潮流分析. 海洋通报, 1996, 12(2): 11~22.
[10] 田向平. 珠江河口伶仃洋最大混浊带研究. 热带海洋, 1986 (5) : 27~35.
[11] 邓 明, 黄 伟, 李 炎. 珠江河口悬浮泥沙遥感数据集. 海洋与湖沼, 2002, 33(4): 341~348.
[12] 刘先紫. 珠江河口伶仃洋的悬移质泥沙特征. 热带地理, 1982 (3): 31~38.
[13] 陈耀泰. 珠江入海泥沙的浓度和成分特征及其沉积扩散趋势. 中山大学学报, 1991, 30(1): 105~113.
[14] 王 颖, 张振克, 朱大奎等. 河海交互作用与苏北平原成因. 第四纪研究, 2006, 26(3): 301~320.
[15] 李本川, 李成治, 李本川等. 苏北平原海岸地貌特征及沿岸泥沙动态. 海洋科学, 1980, (3): 12~17.
[16] 《中国河湖大典》编纂委员会. 中国河湖大典?淮河卷. 北京:中国水利水电出版社, 2010: 152.
[17] 贾建军, 高 抒, 薛允传. 图解法与矩法沉积物粒度参数的对比. 海洋与湖沼, 2002, 33(6): 577~582.
[18] Wang Y P, Gao S, Jia J, et al. Remarked morphological change in a large tidal inlet with low sediment-supply. Continental Shelf Research, 2014, 2(5): 1~17.
[19] Nielsen P. Coastal Bottom Boundary Layers and Sediment Transport. Singapore: World Scientific Publishing, Advanced Series on Ocean Engineering, 1992, 225~227.
[20] Soulsby R L, Whitehouse R J S. Threshold of sediment motion in coastal environments. In: Proceeding of Pacific Coasts and Ports’97 Conference. Christchurch, New Zealand: University of Canterbury, 1997, 1, 149~154.
[21] 李明亮, 汪亚平, 朱国贤等. 中小型建闸河口的闸下水体悬沙输运过程: 以新洋港河口为例. 海洋通报, 2014, 33(6): 657~667.
[22] Krone R B. Flume studies of the transport of sediment in estuarial shoaling processes, Final Report, Hydrological Engineering Laboratory and Sanitary Engineering Research Laboratory, Berkeley: University of California, 1962, 110.
[23] Partheniades E. Erosion and deposition of cohesive soil. Journal of the Hydraulics Division, ASCE, 1965, 91(HY1): 105~139.
[24] 李占海, 高 抒, 沈焕庭. 大丰潮滩悬沙粒径组成及悬沙浓度的垂向分布特征. 泥沙研究, 2006(1): 62~70.
[25] Reed C W, Niedoroda A W, Swift D J P. Modeling sediment entrainment and transport processes limited by bed armoring. Marine Geology, 1999, 154(1): 143~154.
[26] 李占海, 高 抒, 沈焕庭. 金塘水道的悬沙输运和再悬浮作用特征. 泥沙研究, 2006, (3): 55~62.
[27] 刘 红, 何 青, 王元叶等. 长江口浑浊带海域OBS标定的实验研究. 泥沙研究, 2006 (5): 52~58.
[28] 蒋东辉, 高 抒. 海洋环境沉积物输运研究进展. 地球科学进展, 2003, 18(1): 100~108.
[29] Harris C K, Wiberg P L. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site. Continental shelf research, 1997, 17(11): 1389~1418.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!