南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (5): 646–655.

• • 上一篇    下一篇

典型潮汐水道悬沙浓度的潮控机理模拟分析

徐琦琳1,高 抒1,2*,王文昊1,高建华1,2,杨 旸1,2,徐杨佩云1   

  • 出版日期:2014-09-12 发布日期:2014-09-12
  • 作者简介:(1.南京大学地理与海洋科学学院;2海岸与海岛开发教育部重点实验室)
  • 基金资助:
    海洋公益性行业科研专项经费项目(201005006)

imulation and Analysis of the Tidal Control Mechanism of Suspended Sediment Concentrations in a Typical Tidal Channel Xu Qilin1,Gao Shu1,2,Wang Wenhao1,Gao Jianhua1,2,Yang yang1,2,Xu Yang Peiyun1

imulation and Analysis of the Tidal Control Mechanism of Suspended Sediment Concentrations in a Typical Tidal Channel Xu Qilin1,Gao Shu1,2,Wang Wenhao1,Gao Jianhua1,2,Yang yang1,2,Xu Yang Peiyun1   

  • Online:2014-09-12 Published:2014-09-12
  • About author:(1.School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023,China 2.The Key Laboratory for Coastal and Island Development, Ministry of Education, Nanjing University, Nanjing, 210023,China)

摘要: 根据南京大学海岸与海岛开发教育部重点实验室2012年在南黄海辐射沙脊群西洋水道所获的全潮水文观测数据,分析了流速、悬沙浓度以及近底部切应力的时间变化序列。应用均衡态条件建立了悬沙浓度特征值模型,探讨了各个相关参数变化对悬沙浓度均衡态的影响。结果表明:(1)本研究区潮周期内的大部分时间近底部切应力大于沉积物临界起动切应力,再悬浮作用活跃;(2)给定初始悬沙浓度、沉降速率等参数,经过若干潮周期后悬沙浓度会达到均衡态,此时大小潮周期内侵蚀通量和沉降通量的总量相等,此后各个潮周期内悬沙浓度时间序列随潮相发生变化,但在相同潮相的情况下悬沙浓度显现出相同的时空分布;(3)若改变悬沙沉降速率大小而固定其余参数不变,则沉降速率越大,达到均衡态时的悬沙浓度值越低;(4)若改变再悬浮系数大小而固定其余参数不变,则再悬浮系数越大,达到均衡态时悬沙浓度值越高。因此,潮汐环境中的悬沙浓度特征值不仅受控于潮流的强弱,同时也受控于表层沉积物本身的性质(粒度和粘性,它们决定了沉降速率与再悬浮系数的大小)。

Abstract: Based on the measurements of water level, tidal currents and suspended sediment concentrations (SSCs) in the Xiyang sub-tidal channel, Jiangsu coast, within the radial sand ridges of the South Yellow Sea, which were carried out by the MOE Key Laboratory for Coast and Island Development in 2012, the time series of current velocities, near-bed shear stress and SSCs were analyzed. An equilibrium SSC model was established that includes the various feedback mechanisms and, on such a basis, the impact of different parameters on the characteristic SSC level was evaluated. The results indicate that: (1) in the study area, for most time during a tidal cycle, the near-bed shear stress exceeds the critical shear stress for initial sediment motion, with active resuspension of seabed sediment; (2) under the conditions associated with the local hydrodynamics and sediment dynamics, the SSC will reach equilibrium after several tidal cycles, at which the erosion and deposition fluxes will be balanced over a spring-neap tidal cycle; (3) a low settling velocity of sedimentary particles is associated with a low equilibrium SSC level; and (4) a high seabed erosion coefficient results in a high equilibrium SSC level. Therefore, the characteristic SSC is controlled not only by the flow intensity, but also by the sediment properties (i.e., particle size and viscosity that influence the settling velocity and the erosion coefficient)

[1].王颖黄海陆架辐射沙脊群.北京:中国环境科学出版社, 2002: 433.
[2].邢飞,汪亚平,高建华等.江苏近岸海域悬沙浓度的时空分布特征.海洋与湖沼, 2010, 413): 459~468.
[3].刘运令,汪亚平,吴祥柏等.南黄海苏北近岸西洋水道水沙输运机制分析.海洋学报, 2011, 35(11): 120~127.
[4].诸裕良,严以新,薛鸿超.南黄海辐射沙洲形成发育水动力机制研究——潮流运动平面特征.中国科学(D辑), 1998, 28(5): 403~410.
[5].杜家笔. 南黄海辐射沙脊群沉积物输运与地貌演变.南京:南京大学, 2012.
[6].张忍顺. 苏北黄河三角洲及滨海平原的成陆过程. 地理学报, 1984, 39(2): 173-184.
[7].Gao S. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China. Continental Shelf Research, 2009, 29(16): 1927-1936.
[8].殷勇,张宁.南黄海辐射沙脊群西洋潮道晚更新世晚期以来沉积环境.古地理学报, 2010, 12(5): 618~628.
[9].Wang Y P, Gao S, Jia J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 2011, 291~294: 147~161.
[10].Neves. Mohid Description. Portugal: Technical University of Lisbon, 2003.
[11].Partheniades E. Erosion and deposition of cohesive soil. Journal of the Hydraulics Division, ASCE, 1965, 91(HY1): 105~139.
[12].Ariathurai C R. A finite element model for sediment transport in estuaries. PhD Thesis, 1974.
[13]. Krone R B. Flume studies of the transport of sediment in estuarial shoaling processes. California: University of Berkeley, 1962.
[14].Gadd P E, Lavelle J W, Swift D J P. Estimate of sand transport on the New York shelf using near-bottom current meter observations. Journal of Sedimentary Petrology, 1978, 48:239~252.
[15].Dyer K R. Coastal and estuarine sediment dynamics. Chichester: Wiley, 1986: 342.
[16]. 李占海,高抒,沈焕庭. 大丰潮滩悬沙粒径组成及悬沙浓度的垂向分布特征.泥沙研究, 20061): 62~70.
[17]. Yu Q, Flemming B W, Gao S. Tide-induced vertical suspended sediment concentration profiles: phase lag and amplitude attenuation. Ocean Dynamics, 2011, 61: 403~410.
[18]. Xu J P, Wright L D. Tests of bed roughness models using field data from the Middle Atlantic Bight. Continental Shelf Research, 1995, 15(11/12): 1409~1434.
[19]. Li M Z, Amos C L. Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment. Continental Shelf Research, 1998, 18: 947~ 970.
[20]. Soulsby R L. Dynamics of marine sand, a manual for practical applications. London: Thomas Telford Publication, 1997.
[21].倪志辉,宋志尧.江苏西洋海域潮流流速剖面参数的相位分析.海洋通报, 2009, 28(3): 1~9.
[22].李伯根,谢钦春,夏小明等. 椒江河口最大浑浊带悬沙粒径分布及其对潮动力的响应.泥沙研究, 1999, (1): 18~26.
[23]. Kineke G C, Sternberg R W. The effect of particle settling velocity on computed suspended sediment concentration profiles. Marine Geology, 1989, 90: 159~174.
[24].程 珺,高抒,汪亚平等. 苏北近岸海域表层沉积物粒度及其对环境动力的响应. 海洋地质与第四纪地质, 2009, 29(1): 7~12.
[25].Amos C L, Darborn G R, Christian H A, . In-situ erosion measurements on fine-grained sediments from the Bay of Fundy. Marine Geology, 1992, 108: 175-196.
[26].汪亚平, 高 抒, 贾建军. 浪流联合作用下潮滩沉积动力过程的高分辨率数据采集与分析. 科学通报, 2006, 51(3): 339-348.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!