The red soil distributed in southern Anhui Province is?formed from the?subtropical aeolian deposits. Magnetostratigraphic correlation is the main method to establish the temporal sequence of the red soil. However, the reliability is still controversial. In order to identify the influence of reticulating processes on the characteristic remanence, we carried out high-resolution magnetostratigraphic measurements on the Guantang section in Xuancheng. The results show the characteristic remanence in the homogeneous red soil layer is relatively stable, but unstable in the reticulated red soil layer. This finding indicates it is difficult to?precisely draw?the?B/M boundary. The rock magnetism study illustrates that both type and content of magnetic?minerals in the homogeneous red soil layer are not identical with that in reticulated red soil layer. On one hand, intense reticulating processes altered the primary magnetic minerals and resulted in quantitative decrease,on the other hand, many secondary magnetic minerals formed. Therefore, the detrital remanence is so severely interfered by the chemical remanence that the directions of characteristic remanence obtained in reticulated red soil using conventional methods are unreliable. The B/M boundary in reticulated red soil layer in southern Anhui Province needs to be?reevaluated. This finding is significant for paleomagnetic dating?of other?reticulated red soil in South China
Ye Xiaowen1, Han Zhiyong1, Li Xusheng1, Fang Yingsan2, Wang Xiaoyong1.
The influence of reticulating process on characteristic remanence of red soil in southern Anhui Province[J]. Journal of Nanjing University(Natural Sciences), 2014, 50(2): 192
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Xiong S F, Sun D H, Ding Z L. Aeolian origin of the red earth in southeast China. Journal of Quaternary Science, 2002, 17(2):181-191. [2] 陈秀玲, 李志忠, 靳建辉等. 中国南方第四纪红土研究进展. 福建师范大学学报(自然科学版), 2009, 25(5):118-124. [3] 赵志中, 乔彦松, 王 燕等. 成都平原红土堆积的磁性地层学及古环境记录. 中国科学(D辑:地球科学), 2007, 37(3):370-377. [4] 朱显漠. 中国南方的红土与红色风化壳. 第四纪研究, 1993(1):75-84. [5] 胡雪峰, 朱 煜, 沈铭能. 南方网纹红土多元成因的粒度证据. 科学通报, 2005, 50 (9):918-925. [6] 尹秋珍, 郭正堂. 中国南方的网纹红土与东亚季风的异常强盛期.科学通报, 2006, 51(2):186-193. [7] 杨达源.中国东部的第四纪风尘堆积与季风变迁. 第四纪研究, 1991(4):354-360. [8] 李徐生, 杨达源, 鹿化煜等. 皖南第四纪风尘堆积序列粒度特征及其意义. 海洋地质与第四纪地质,1997, 17(4):73-81. [9] Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quaternary Science Reviews, 2010, 29(23-24):3317-3326. [10] 乔彦松, 郭正堂, 郝青振等. 安徽宣城黄土堆积的磁性地层学与古环境意义. 地质力学学报, 2002, 8(4):369-375. [11] 李长安, 顾延生. 江西修水第四系网纹红土的地层学研究. 地层学杂志, 1997,21(3):226-232. [12] 刘海丽. 宣城官塘村红土剖面的网纹成因浅析.南京:南京大学, 2012. [13] 吴锡浩, 徐和聆, 蒋复初等. 长江中下游地区网纹红土中撞击事件记录的首次发现与初步研究. 地质地球化学, 1995(4):83-86. [14] 韩志勇, 李徐生, 陈英勇等. 鄱阳湖滨沙岭地区网纹层的顶界年代.地理科学, 2012(1):110-115. [15] 蒋复初, 吴锡浩, 肖华国等. 九江地区网纹红土的时代. 地质力学学报, 1997, 3(4) :27-32. [16] Liu C C, Xu X M, Yuan B Y, et al. Magnetostratigraphy of the Qiliting section (SE China) and its implication for geochronology of the red soil sequences in southern China. Geophysical Journal International, 2008, 174(1):107-117. [17] 杨小强, 朱照宇, 张轶男等. 广西百色盆地含石器层沉积物岩石磁学及古地磁学综合研究. 中国科学(D辑:地球科学), 2008, 38(1):108-117. [18] 刘彩彩, 邓成龙, 刘青松. 利用岩石磁学方法研究南方红土磁记录的可靠性. 中国地球物理, 2009:401. [19] 朱丽东, 周尚哲, 叶 玮等. 中国南方红土沉积与环境变化研究. 浙江师范大学学报(自然科学版), 2005, 28(2):206-210. [20] 杨立辉, 叶 玮, 朱丽东等. 中国南方第四纪红土的形成时代. 热带地理, 2005, 25(4):293-297. [21] Nesbitt H W, Young G M. Early Proterozoic climate and plate motion inferred from major element chemistry of lutites. Nature, 1982, 299:715-717. [22] Roberts A P, Cui Y L, Verosub K L. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research, 1995, 100(B9):17909-17924. [23] 敖 红, 邓成龙. 磁性矿物的磁学鉴别方法回顾. 地球物理学进展, 2007, 22(2):432-442. [24] 郝青振, 郭正堂, 彭淑贞. 陇西第三纪红土磁学性质初步研究. 第四纪研究, 2000, 20(5):447-456. [25] Deng C L, Zhu R X, Jackson M J, et al. Variability of the temperature-dependent susceptibility of the holocene eolian deposits in the Chinese loess Plateau: A Pedogenesis Indicator Phys.Chem. Earth(A), 2001, 26(11-12):873-878. [26] Liu Q S, Deng C L, Yu Y J, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 2005, 161(1):102-112. [27] Sun W W, Banerjee S K, Hunt C P. The role of maghemite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence: An extensive rock magnetic study combined with citrate-bicarbonate-dithionite treatment.Earth and Planetary Science Letters,1995, 133(3~4):493-505. [28] Oches E A, Banerjee S K. Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic. Studia Geophysica et Geodaetica,1996, 40(3):287-300. [29] Florindo F, Zhu R X, Guo B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau. Journal of Geophysical Research, 1999, 104(B1):645. [30] Deng C L, Zhu R X, Verosub K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene Loess along a NW-SE transect in the Chinese Loess Plateau. Geophysical Research Letters, 2000, 27(22):3715-3718. [31] Deng C L, Zhu R X, Verosub K L. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Journal of Geophysical Research, 2004, 109(B1): - . [32] 刘彩彩, 邓成龙. 南方红土的磁性矿物组成及其区域性差异. 第四纪研究, 2012, 32(4):625-634. [33] Geissman J W. Paleomagnetic and rock magnetic evidence for a secondary yet early magnetization in large sandstone pipes and host Late Middle Jurassic (Callovian) Summerville Formation and Bluff Sandstone near Mesita, west central New Mexico. Journal of Geophysical Research, 2004, 109(B7): - . [34] 卢升高. 中国土壤磁性与环境. 北京:高等教育出版社, 2003:240. [35] 刘彩彩, 邓成龙. 南方红土磁性地层年代学研究进展. 地学前缘, 2011(4):158-170. [36] Zijderveld J D A. AC demagnetization of rocks: Analysis of results. In: Collison D W, Creer K M, Runcorn S K, eds.Methods in Palaeomagnetism. 1967, Elsevier: New York. 254-286. [37] Butler R F, Paleomagnetism:Magnetic Domains to Geologic Terranes, Portland :2004. [38] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astron Soc, 1980, 62:699-718 . [39] 冯连君, 储雪蕾, 张启锐等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 2003, 10(4) : 539-544. [40] Deng C L, Liu Q S, Wang W, et al. Chemical overprint on the natural remanent magnetization of a subtropical red soil sequence in the Bose Basin, southern China. Geophysical Research Letters, 2007, 34(22) . [41] Liu C C, Deng C L, Liu Q S, et al. Mineral magnetism to probe into the nature of palaeomagnetic signals of subtropical red soil sequences in southern China. Geophysical Journal International, 2010,181:1395-1410. [42] 王喜生, 杨振宇, Reidar L等. 三门峡地区黄土L9的重磁化现象及原因探析. 第四纪研究, 2005, 25(4):453-460. [43] 朱景郊. 网纹红土的成因及其研究意义. 地理研究, 1988, 7(4):12-20. [44] 来红州, 莫多闻, 李新坡. 洞庭盆地红土地层中网纹的成因探讨. 北京大学学报(自然科学版), 2005, 41(2):240-248. [45] 熊尚发, 丁仲礼, 刘东生. 南方红土网纹:古森林植物根系的土壤学证据. 科学通报, 2000, 45(12):1317-1321. [46] 韩志勇, 李徐生, 陈英勇等. 矫顽力组分定量分析揭示下蜀黄土磁化率异常降低的原因. 地球物理学报, 2008, 51(6):1835-1843. [47] 袁宝印, 夏正楷, 李保生等.中国南方红土年代地层学与地层划分问题. 第四纪研究, 2008, 28(1):1-13. [48] 李凤全, 叶 玮, 朱丽东等. 第四纪网纹红土的类型与网纹化作用. 沉积学报, 2010, 28(2):346-355. [49] 郑 妍, 张世红. 北京市区尘土与表土的磁学性质及其环境意义. 科学通报, 2007, 52(20):2399-2406. [50] 曾永耀, 杨 杰. 基于环境磁学的生态系统演化和磁性矿物的关系. 四川地质学报, 2010, 30(1):68-71. [51] 刘 健, 朱日祥, 李绍全等. 南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应. 中国科学(D辑:地球科学), 2003, 33(6):583-592. [52] 杨小强, 周文娟, 阳 杰. 陆地生态系统演替过程中的磁性矿物响应—以粤西小良水土保持观测站为例. 第四纪研究, 2007, 27(6):1121-1128. [53] 李徐生, 杨达源, 鹿化煜. 皖南风尘堆积序列氧化物地球化学特征与古气候记录. 海洋地质与第四纪地质, 1999, 19(4): 75-82.