南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (2): 135–.

• • 上一篇    下一篇

 异质结型有机太阳能电池材料的最新研究进展

 张超智*,李世娟,胡 鹏,沈 丹,张 骁,孙晓飞   

  • 出版日期:2014-04-07 发布日期:2014-04-07
  • 作者简介: 南京信息工程大学环境与科学工程学院,南京,210044
  • 基金资助:
     江苏省特聘教授科研经费(R2012T01),江苏省产学研项目(BY2012028),教育部留学回国启动基金(2013S010)

 Recent progress of heterojunction organic solar cell materials

 Zhang Chaozhi, Li Shijuan, Hupeng, Shendan, Zhang Xiao, Sun Xiaofei   

  • Online:2014-04-07 Published:2014-04-07
  • About author: Nanjing University of Information Science and Technology, Nanjing,210044,China

摘要:  异质结型有机太阳能电池作为一种低耗、高效的有机光伏器件,成为研究热点。本文简介异质结型有机太阳能电池的特点和工作原理;综述电子给体和受体材料的研究进展;最后展望了异质结型有机太阳能电池发展趋势和应用前景。

Abstract:  Heterojunction organic solar cell have continuously drawn great interest due to their several advantages, such as cheap price, light weight, and easy combination and modification. In this article, the characteristics and working principle of the heterojunction organic solar cell were briefly introduced. Then, the recent advances of donor and acceptor materials were summarized. Finally, the further development and potential application of the heterojunction organic solar cell were predicted.

 [1] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 591~595.
[2] Seo J H, Gutacker A, Sun Y, et al. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. Journal of the American Chemical Society, 2011, 133(22): 8416~8419.
[3] Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of chemical research, 2012, 45(5): 723~733.
[4] Tang C W. Two-layer organic photovoltaic cell. Applied Physics Letters, 1986, 48(2): 183~185.
[5] Ding K, Dai L X. Organic Chemistry-Breakthroughs and Perspectives. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2012, 643~683.
[6] Zhang J, Deng D, He C, et al. Solution-processable star-shaped molecules with triphenylamine core and dicyanovinyl endgroups for organic solar cells. Chemistry of Materials, 2010, 23(3): 817~822.
[7] Sun S S, Fan Z, Wang Y, et al. Morphological effects to carrier mobility in a RO-PPV/SF-PPV donor/acceptor binary thin film opto-electronic device. Materials Science and Engineering: B, 2005, 116(3): 279~282.
[8] Sun S S, Bonner C E. Optimizing organic solar cells in both space and energy domains. Synthetic Metals, 2005, 154(1): 65~68.
[9] Li Y, Pullerits T, Zhao M, et al. Theoretical characterization of the PC60BM: PDDTT model for an organic solar cell. The Journal of Physical Chemistry C, 2011, 115(44): 21865~21873.
[10] Mikroyannidis J A, Sharma G D, Sharma S S, et al. Novel low band gap phenylenevinylene copolymer with BF2-Azopyrrole complex units: synthesis and use for efficient bulk heterojunction solar cells. The Journal of Physical Chemistry C, 2010, 114(3): 1520~1527.
[11] Walker B, Kim C, Nguyen T-Q, et al. Small molecule solution-pocessed bulk heterojunction solar cells. Chemistry of Materials, 2011, 23(3): 470~482.
[12] Pappenfus T M, Schmidt J A, Koehn R E, et al. PBC-DFT applied to donor-acceptor copolymers in organic solar cells: comparisons between theoretical methods and experimental data. Macromolecules, 2011, 44(7): 2354~2357.
[13] Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6(3): 153~161.
[14] 彭俊彪, 周晓明, 於黄忠. 不同比例的MEH-PPV与PCBM共混体系光电池性能研究. 物理学报, 2008, 57(6): 3898~3904.
[15] Halls J J M, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks.Nature, 1995, 376: 498~500.
[16] Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. Journal of Applied Physics, 1995, 78(7): 4510~4515.
[17] Kietzke T, Hörhold H H, Neher D. Efficient polymer solar cells based on M3EH-PPV. Chemistry of Materials, 2005, 17(26): 6532~6537.
[18] Liang Y, Feng D, Wu Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. Journal of the American Chemical Society, 2009, 131(22): 7792~7799.
[19] Zhou H, Yang L, Stoneking S, et al. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells. ACS applied materials and Interfaces, 2010, 2(5): 1377~1383.
[20] Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. Journal of the American Chemical Society, 2011, 133(12): 4625~4631.
[21] 刘小锐, 陈春香, 何荣幸, 等. 两种异质结太阳能电池聚合物供体材料的设计与理论性质. 化学学报, 2012, 70(22): 2365~2371.
[22] Zhou J, Wan X, Liu Y, et al. Small molecules based on benzo [1, 2-b: 4, 5-b′] dithiophene unit for high-performance solution-processed organic solar cells. Journal of the American Chemical Society, 2012, 134(39): 16345~16351.
[23] 和平, 李在房, 侯秋飞, 等. 苯并噻二唑类有机太阳能电池材料研究进展. 有机化学, 2013, 33(2): 288~304.
[24] Peters C H, Sachs-Quintana I T, Kastrop J P, et al. High efficiency polymer solar cells with long operating lifetimes. Advanced Energy Materials, 2011, 1(4): 491~494.
[25] Qin R P, Li W W, Li C H, et al. A planar copolymer for high efficiency polymer solar cells. Journal of the American Chemical Society, 2009, 131(41): 14612~14613.
[26] Liu X, Wen W, Bazan G C. Post-deposition treatment of an arylated-carbazole conjugated polymer for solar cell fabrication. Advanced Materials, 2012, 24(33): 4505~4510.
[27] Lee S K, Seo J H, Cho N S, et al. Effect of side chain position on solar cell performance in cyclopentadithiophene-based copolymers. Thin Solid Films, 2012, 520(16): 5438~5441.
[28] Hummelen J C, Knight B W, LePeq F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives. The Journal of Organic Chemistry, 1995, 60(3): 532~538.
[29] Wienk M M, Kroon J M, Verhees W J, et al.Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angewandte Chemie, 2003, 115(29): 3493~3497.
[30] He Y, Chen H Y, Hou J, et al. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. Journal of the American Chemical Society, 2010, 132(4): 1377~1382.
[31] He Y, Zhao G, Peng B, et al. High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct. Advanced Functional Materials, 2010, 20(19): 3383~389.
[32] Meng X, Zhang W, Tan Z, et al. Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70] fullerene bisadduct derivative as the acceptor. Advanced Functional Materials, 2012, 22(10): 2187~2193.
[33] Deng L L, Feng J, Sun L C, et al. Functionalized dihydronaphthyl-C60 derivatives as acceptors for efficient polymer solar cells with tunable photovoltaic properties. Solar Energy Materials and Solar Cells, 2012, 104: 113~120.
[34] Park O Y, Kim H U, Kim J H, et al. Tetrafluorene-9, 9′-bifluorenylidene as a non-fullerene type electron acceptor for P3HT-based bulk-heterojunction polymer solar cells. Solar Energy Materials and Solar Cells, 2013, 116: 275~282.
[35] Facchetti A. Polymer donor-polymer acceptor (all-polymer) solar cells. Materials Today, 2013, 16(4): 123~132.
[36] Schubert M, Dolfen D, Frisch J, et al. Influence of aggregation on the performance of all-polymer solar cells containing low-bandgap naphthalenediimide copolymers. Advanced Energy Materials, 2012, 2(3): 369~380.
[37] Mikroyannidis J A, Suresh P, Sharma G D. Synthesis of a perylene bisimide with acetonaphthopyrazine dicarbonitrile terminal moieties for photovoltaic applications. Synthetic Metals, 2010, 160(9): 932~938.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!