南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (1): 41–.

• • 上一篇    下一篇

频域自适应算法在有源噪声控制系统中的性能研究

 毛 鑫*,卢 晶,邹海山   

  • 出版日期:2014-01-18 发布日期:2014-01-18
  • 作者简介: 南京大学声学研究所,南京,210093
  • 基金资助:
     国家自然科学基金(11374156和11104141),华南理工大学亚热带建筑科学国家重点实验室开放基金资助项目(2010KB06)

Investigation of the performance of frequency domain adaptive algorithms in active noise control system

 Mao Xin, Lu Jing,Zou Haishan   

  • Online:2014-01-18 Published:2014-01-18
  • About author: The Institute of Acoustics, Nanjing University, Nanjing, 210093, China

摘要:  频域自适应算法有较快的收敛速度和较低的运算量,这使得其很适合在实时有源噪声控制系统中使用。常用的归一化频域算法在非因果条件时,收敛不到最优解。本文分析了归一化频域算法在非因果条件下稳态解的特性,提出一种新的滤波器系数自适应调整方法,并证明了新算法在非因果条件下也能收敛到最优解。论文对非因果条件下的归一化频域算法进行了仿真,并利用基于DSP的实时有源噪声控制系统对几种相关算法进行评测,仿真和实验结果证实了理论分析的正确性。

Abstract:  Frequency-domain adaptive algorithm has the benefits of fast convergence speed and low computational burden, which makes it a good choice in the implementation of active noise control systems. However the commonly used bin-normalized frequency domain algorithm suffers from deterioration of least mean error in non-causal conditions. Active noise control system has its inherent electric delay, in the application of active noise control in a short duct, non-causal conditions often occur. It is a meaningful work to research or improve the performance of frequency domain adaptive algorithms in non-causal conditions. This paper analyzes the steady state solution of bin-normalized frequency domain algorithm in non-causal conditions. It is proved that the steady state solution of the bin-normalized frequency domain algorithm is related with the flatness of reference signal power spectrum. A new frequency domain filter coefficients updating method is also proposed in this paper, and theoretically the new algorithm can converge to the optimal solution in non-causal conditions. The performance of the bin-normalized frequency domain algorithm is illustrated by simulations. Furthermore, the performances of related algorithms are also compared in a real time active noise control DSP system. Simulations and experiments verify the theoretical analysis.

 [1] Shynk J J.Frequency-domain and multirate adaptive filtering.IEEE Signal Processing Mag, 1992, 9(1): 14-37.
[2] Clark G A , Parker S R , Mitra S K , A unified approach to time and frequency domain realization of FIR adaptive digital filters.IEEE Trans. Acoustic, Speech, Signal Process, 1983, 31(5): 1073-1083.
[3] Lee J C,Un C K.Performance analysis of frequency-domain block LMS adaptive digital filters.IEEE Trans. Circuits Syst., 1989, 36(2): 173-189.
[4] Farhang-Boroujcny B,Chan K S.Analysis of frequency-domain block LMS algorithm.IEEE Trans. Signal processing, 2000, 48(8): 2332-2342.
[5] Elliot S J , Signal processing for active control. San Diego, CA: Academic, 2000, 49-175.
[6] 卢晶, 邱小军, 徐柏龄. 格型零极点滤波器在有源噪声控制中的特性分析及其与常规算法的比较. 南京大学学报(自然科学), 2004, 40(4): 438-445.
[7] Feure A,Rafaely B.On the steady state performance of frequency domain algorithms.IEEE Trans. Signal Processing, 1993, 41: 419-423.
[8] Elliott S J,Rafaely B.Frequency domain adaptation of causal digital filters.IEEE Transactions on Signal Processing, 2000, 48(5): 1354-1364.
[9] Vaidyanathan P P.The Theory of Linear Prediction. Morgan and Claypool, 2008, 69-72.
[10] Stoica P,Moses R.Spectral analysis of signals.Upper Saddle River, NJ: Prentice Hall, 2005:22-85.
[11] Haykin S.Adaptive Filter Theory. 3nd ed. Upper Saddle River, NJ: Prentice Hall, 1996:365-439.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!