南京大学学报(自然科学版) ›› 2013, Vol. 49 ›› Issue (6): 782–.

• • 上一篇    

高斯叠代法研究相控阵栅瓣的优化*

邱媛媛1,许 阳2   

  • 出版日期:2014-01-14 发布日期:2014-01-14
  • 作者简介:(1.南通大学电子信息学院,南通,226019; 2.近代声学教育部重点实验室,南京大学声学研究所,南京,210093)
  • 基金资助:
    国家自然科学基金(11204144),江苏省自然科学基金(SBK201240200),江苏省高校自然科学基金(11KJB140005)

Optimization of side-lobes generated from a phased array using Gaussian superposition technique

Qiu Yuan-Yuan1, Xu Yang2   

  • Online:2014-01-14 Published:2014-01-14
  • About author: (1.Department of electronic information, Nantong University, Nantong, 226019, China; 2.Institute of Acoustics, Nanjing University, Nanjing210093, China)

摘要: 高强度聚焦超声(High intensity focused ultrasound,HIFU)是一种新兴的治疗肿瘤的技术,将声波能量聚焦到人体组织内的靶区,产生热效应消融肿瘤组织,而不损伤正常组织。HIFU中的相控阵技术可以根据病灶区域的深度以及大小通过控制多阵元发射声束的相位与幅度,实现焦点的精确控制,并可实现多焦点聚焦及电子扫描。相控阵在聚焦超声治疗应用中不可避免地受到栅瓣的影响,本文结合高斯声束叠加与相控阵技术中的伪逆矩阵算法研究相控阵的声场,并对栅瓣进行优化研究。该方法利用预设焦点参数并应用伪逆矩阵算法得到阵元的激励参数;然后将阵元近似拟合成一组高斯声束的叠加,通过高斯声束叠代计算声场。数值计算中以9×9二维相控阵列为研究对象;线性条件下,高斯叠代法结果与菲涅耳积分结果的误差低于1%,验证了该方法的可行性;二维相控阵在单焦点模式下减小阵元间距可以有效抑制旁瓣,但不能完全抑制。进一步的实验研究将进一步优化理论模型。本文的结果将有效促进相控阵聚焦换能器在HIFU中的应用。

Abstract: : High intensity focused ultrasound (HIFU) has attracted much attention as a new non-invasive cancer therapy technique. It focuses the ultrasonic energy into the target tissues inside the body, and the temperature of the target tissues rapidly increases in a short time, leading to the tumor cells coagulation necrosis with minimal impact on the normal tissues outside the focusing area. The phased array technology has some advantages of electronic beam focusing and multi-focuses, it is required to control the exciting vector and the phase of the elements based on the depth and size of the lesion area. Phased array is inevitably influenced by grating lobes in focused ultrasound therapy. Based on the superposition technique of Gaussian beams combined with the inverse matrix algorithm, the sound field generated from a phased array is calculated, and the optimization study of grating lobes is developed. The parameters of the phased array elements are first estimated from the focal parameters using the inverse matrix algorithm; Then the elements are expressed as a set of Gaussian functions; Finally, the sound field can be calculated using the superposition technique of Gaussian beams. A 9×9 two dimensional phased array is performed in the numerical simulation. In the linear case, the difference between the results of the Gaussian superposition technique and the Fresnel integral is less than 1%, which verifies the feasibility of the approach. The side-lobes generated from a 2-D phased array can be effectively suppressed through the decrease of element spacing in a single focus mode, but cannot be fully suppressed. The theoretical approach will be improved by further experimental works. This study will promote the application of the phased array in HIFU.

[1] Tu J, Hwang J H, Chen T, et al. Controllable in vivo hyperthermia effect induced by pulsed high intensity focused ultrasound with low duty cycles. Applied Physics letters, 2012, 101:124102.
[2] Hynynen K. Review of ultrasound therapy. IEEE Ultrasonics Symposium, 1997, 2:1305-1313.
[3] Ebbini E S, Ibbini M S, Cain C A. An inverse method for hyperthermia phased-array pattern synthesis. IEEE Ultrasonics Symposium, 1988, 2:947-950.
[4] Ebbini E S, Cain C A. Multiple-focus ultrasound phased-array pattern synthesis: optimal driving-signal distributions for hyperthermia, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1989, 36(5):540-548.
[5] Ebbini E S, Cain C A. A field conjugation method for direct synthesis of hyperthermia phased-array heating patterns. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1989, 36(1):3-9.
[6] Ballard J R, Casper A J, Wan Y Y, et al. Adaptive transthoracic refocusing of dual-mode ultrasound arrays. IEEE Transactions on Biomedicine Engineering, 2010, 57(1):93-102.
[7] Lu M Z, Wan M X. Focused beam control for ultrasound surgery with spherical-section phased array: sound field calculation and genetic optimization algorithm. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2005, 52(8):1270-1290.
[8] Li G W, Chen Y Z. A spherical high intensity focused ultrasound phased array with unequal space between elements. Acta Acustica, 2001;26(2):117-120.(李国伟,陈亚珠.不等间距排列的球面高强度聚焦超声相控阵列. 声学学报,2001,26(2):117-120).
[9] Pompei F J, Wooh S C. Phased array element shapes for suppressing grating lobes. Journal of Acoustic Society of American, 2002, 111:2040:2048.
[10] Xu F, Lu M Z, Wan M X, et al. System errors of a 256-element high intensity focused ultrasound phased array and precise control of multi-focus patterns. Acta Physica Sinica, 2010,59:1349-1356(徐丰,陆明珠,万明习,方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制.物理学报,2010, 59:1349-1356).
[11] Matthew G B, Douglas H W , Daniel W B, et al .Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning. IEEE Transactions on Antennas and Propagation, 2002,50:1732-1742.
[12] Filonenko E A, Khokhlova V A. Effect of acoustic nonlinearity on heating of biological tissue by High-intensity focused ultrasound. Acoustical Physics, 2001,47(4):541-549.
[13] Wen J J , Breazeale M A. A diffraction beam field expressed as the superposition of Gaussian beams, Journal of Acoustic Society of American, 1988,83:1762-1768.
[14] Sha K, Yang J. A complex virtual source approach for calculating the diffraction beam field generated by a rectangular planar source. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50(7):890-897.
[15] Yang J, Sha K, Gan W S, et al. A fast field scheme for the parametric sound radiation from rectangular aperture source. Chinese Physics Letters , 2004,21(1):110-113.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!