南京大学学报(自然科学版) ›› 2013, Vol. 49 ›› Issue (6): 710–.

• • 上一篇    下一篇

 硫酸盐还原菌作用下磁性铁氧化物的分解及磁性变化

 周跃飞,庆承松,汪国威,谢巧勤, 陈天虎**   

  • 出版日期:2014-01-14 发布日期:2014-01-14
  • 作者简介: 合肥工业大学纳米矿物与环境材料实验室, 合肥工业大学资源与环境工程学院, 合肥, 230009
  • 基金资助:
     国家自然科学基金(41130206,41172048,41072036),国家973计划预研项目(2011CB411904)

 The decompositions and magnetic variations of magnetic iron oxides with the mediation of sulfate-reducing bacteria

 Zhou Yue-Fei, Qing Cheng-Song, Wang Guo-Wei, Xie Qiao-Qin, Chen Tian-Hu   

  • Online:2014-01-14 Published:2014-01-14
  • About author: Laboratory of Nanominerals and Environmental Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China

摘要:  研究了硫酸盐还原菌作用下磁性铁氧化物分解的过程及对体系磁性的影响. 实验主要考查了有/无菌及有菌+有/无硫酸盐条件下体系中物相组合、磁化率、形貌等随时间的变化. 结果表明, 研究使用的细菌具有以磁性铁氧化物为电子受体进行生长的能力; 无硫酸盐条件下, 细菌作用导致多孔磁性铁氧化物还原分解并产生超顺磁纳米微粒, 相应提高体系磁化率; 有硫酸盐条件下, SRB及代谢产物S2-还原分解磁性铁氧化物, 生成无定形铁硫化物附着于矿物表面, 体系磁化率降低. SRB—磁性铁氧化物交互作用过程中, 磁化率变化受硫酸盐、矿物种类和性质的共同制约.

Abstract:  This study focused on the decompositions and associated magnetic variations of magnetite and maghemite with the mediations of sulfate-reducing bacterium (SRB) and its metabolites. Experiments of non-biotic, SRB without sulfate and SRB with sulfate were designed. During the experiments magnetic susceptibilities were monitored. While after the experiments solids were determined for phase assemblages and micromorphologies. The results showed that SRB applied in this study can growth using magnetic iron oxides as electron acceptors. Under sulfate-lacked condition, SRB decomposed magnetite and maghemite directly and generated some superparamagnetic particles, which increased the magnetic susceptibility of the experimental system. Under sulfate-added condition, the metabolite S2- acted as the dominant electron donor for the reductive decompositions of magnetite and maghemite. Besides, S2- also reacted with Fe2+ to form amorphous iron sulfides, which precipitated on the surface of both bacteria and minerals. Magnetic susceptibility in such experiment was decreased rapidly. It is concluded that during the process of SRB-magnetic iron oxide interaction, the variation of magnetic susceptibility is constrained mainly by sulfate and the type and property of mineral.

 

[1] Chen T H, Xu H F, Xie Q Q, et al. Characteristics and genesis of maghemite in Chinese loess and paleosols: Mechanism for magnetic susceptibility enhancement in paleosols. Earth and Planetary Science Letters, 2005, 240(3): 790~802.

[2] Navrotsky A, Mazeina L, Majzlan J. Size-driven structural and thermodynamic complexity in iron oxides. Science, 2008, 319: 1635~1638.

[3] Wu W F, Li Y L, Pan Y X. Microbial mineralization in Precambrian banded iron formation. Chinese Journal of Geology, 2012, 47(2): 548~560. (吴文芳, 李一良, 潘永信. 微生物参与前寒武纪条带状铁建造沉积的研究进展. 地质科学, 2012, 47(2): 548~560).

[4] Dearing J A, Dann R J L, Hay K, et al. Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 1996, 124: 228~240.

[5] Zheng H B, Oldfield F, Yu L Z, et al. The magnetic properties of particle-sized samples from the Luo Chuan Loess Section: Evidence for pedogenesis. Physics of the Earth and Planetary Interiors, 1991, 68: 250~258.

[6] Shau Y H, Peacor D R, Essene E J. Formation of magnetic single-domain magnetite in ocean ridge basalts with implications for sea-floor magnetism. Science, 1993, 261: 343~345.

[7] Thouveny N, de Beaulieu J L, Bonifay E, et al. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature, 1994, 371: 503~506.

[8] Liu Q S, Li H X, Wang F, et al. Magnetic, geochemical and mineralogical structure and significance in complete space of oil and gas reservoir. Journal of China University of Geosciences—Earth Science, 2002, 27(5): 637~644. (刘庆生, 李海侠, 王芳, . 油气藏全空间磁学、地球化学与矿物学结构及意义检验烟筒效应的形成机理. 地球科学: 中国地质大学学报, 2002, 27(5): 637~644).

[9] Pan Y X, Zhu R X. A review of biogeophysics: The establishment of a new discipline and recent progress. Chinese Science Bulletin, 2011, 56(17): 1335~1344. (潘永信, 朱日祥. 生物地球物理学的产生与研究进展 . 科学通报, 2011, 56(17): 1335~1344).

[10] Li Y L, Pfiffner S M, Dyar M D, et al. Degeneration of biogenic superparamagnetic magnetite. Geobiology, 2009, 7(1): 25~34.

[11] Canfield D E, Berner R A. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica et Cosmochimica Acta, 1987, 51: 645~659.

[12] Poulton S W, Krom M D, Raiswell R A. revised scheme for the reactivity of iron (oxyhydr)oxide minerals toward dissolved sulfide. Geochimica et Cosmochimica Acta, 2004, 68: 3703~3715.

[13] Dong H L, Fredrickson J K, Kennedy D W. Mineral transformation associated with the microbial reduction of magnetite. Chemical Geology, 2000, 169: 299~318.

[14] Li Y L, Vali H, Yang J, et al. Reduction of iron oxides enhanced by a sulfate-reducing bacterium and biogenic H2S production. Geomicrobiology Journal, 2006, 23: 103~117.

[15] Jin J, Wang G G, Wu K, et al. The analysis of 16S rDNA sequence and phylogenic tree construction for a strain of Desulfovibrio. In: Proceedings of the 3rd International Conference on Asian-European Environmental Technology and Knowledge Transfer, Hefei, China, 2010, 818-823.

[16] Qu D, Schnell S. Microbial reduction ability of various iron oxides in pure culture experiment. Acta Microbiologica Sinica, 2001, 41(6): 745~749. (曲东, Schnell S. 纯培养条件下不同氧化铁的微生物还原能力 . 微生物学报, 2001, 41(6): 745~749).

[17] Fredrickson J K, Zachara J M, Kennedy D W, et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 1998, 62(19): 3239~3257.

[18] Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments. In: Advances in microbial ecology. Schink B (ed) Kluwer Academic/Plenum Publishers, New York, 2000, p41-84.

[19] Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Review Microbiology, 2006, 4: 752~764.

[20] Roden E E, Zachara J M. Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environmental Science & Technology, 1996, 30(5): 1618~1628.

[21] Bridge T A M, White C, Gadd G M. Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans. Microbiology, 1999, 145: 2987~2995.

[22] Liu Q S, Deng C L, Pan Y X. Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism. Quaternary Research, 2007, 27(6): 955~962. (刘青松, 邓成龙, 潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意. 第四纪研究, 2010, 27(6): 955~962).

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!