南京大学学报(自然科学版) ›› 2013, Vol. 49 ›› Issue (6): 698–.

• • 上一篇    下一篇

毒砂在酸性溶液中的水-矿表界面反应机制研究

胡潇潇1,蔡元峰1,2,李娟2,潘宇观2   

  • 出版日期:2014-01-14 发布日期:2014-01-14
  • 作者简介:(1.南京大学地球科学与工程学院,南京,210093; 2.南京大学内生金属成矿机制研究国家重点实验室,南京,210093)
  • 基金资助:
    国家自然科学基金(40872035),国家自然科学基金重点基金(40930742)

Study of Water-mineral Surface and Interface Reaction of Arsenopyrite in Acid Solutions

Xiaoxiao Hu1, Yuanfeng Cai1,2, Juan Li2, Yugan Pan2   

  • Online:2014-01-14 Published:2014-01-14
  • About author: (1.School of Earth Science and Engineering, Nanjing University, Nanjing,210093, China; 2.State Key Laboratory of Mineral Deposit Research, Nanjing University, Nanjing,210093, China)

摘要: 为了解毒砂(Apy)在风化过程中其矿物表面的化学成分的变化和风化进程,并评估这一过程及其产物带来的潜在环境风险,我们采用边长切割为2.5mm左右具有“立方体”外形的毒砂样品,将其分别与pH为0、1、3的硫酸溶液在反应釜中进行100-300℃的水矿反应实验。对反应淋出液进行了电感耦合等离子原子发射光谱(ICP-AES)分析,并对反应残余固体进行了包括表面产物的X射线光电子能谱(XPS)、电子探针微分析(EPMA)、X射线粉晶衍射测试(XRD)及扫描电子显微镜(SEM)形貌观察等分析和测试。本研究的ICP-AES测试结果表明,有大量的砷(As)进入溶液(其价态未测定),且随着温度的升高或酸浓度的增加,溶液中的As离子浓度显著升高。对反应产物的形貌观察(SEM)显示,毒砂的溶解反应从矿物颗粒的裂隙边缘和立方体边缘部位开始进行,反应界面逐步向立方体内部迁移。XPS对反应残余固体表面的元素窄扫描显示,表面有Fe3+、S8、SO32-、SO42-、As3+、As5+和少量的As1+生成,其中含量较多的是As3+离子。样品的As2p3/2 深度剖析显示,随着剥蚀深度的增加,还原态As含量增加,而氧化态As含量减少,表明反应促使毒砂氧化,生成氧化态As。由于氧化态的As大量转移至溶液中,暗示了毒砂的氧化造成了As元素从含As的矿物、岩石中溶解活化,并通过地下水等方式参与地表及地下水循环,从而对生态环境构成巨大的潜在威胁。

Abstract: In an effort to understand what happened at the mineral surface or interface during the arsenopyrite(Apy)weathering/oxidation process, and to assess the potential environmental risks of this processand its products as well, fifteen arsenopyrite specimens were cut into cubes (length side about 2.5mm) and reacted with sulphuric acid under 100-300℃ in the reaction pots. The pH levels of the acid solutions are 0, 1, and 3, respectively. Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was taken to analyze the remaining solutions after reaction. The productspresentat the residual solid surface were tested by the X-ray Photoelectron Spectroscopy (XPS),Electron Probe Microanalysis (EPMA) and X-ray Powder Diffractometry (XRD). Scanning Electron Microscopy (SEM) was used to accomplish the morphological analysis. Results from ICP-AES present that a large number of As move into solution (the valence untested), and the level of total As ion in the solution significantly increased with the rise of temperature and acid concentration. Themorphological observation from SEM shows that the dissolution of arsenopyrite starts from the edges of cube and the fracture. Then, thereaction interface gradually migrates into the innerpart of the arsenopyrite cube. XPS narrow scan of the residual solid surface indicates that Fe3+, S8, SO32-, SO42-, As3+, As5+ and a small amount of As1+ are generated at the surface, among whichAs3+ dominates. XPS profile analysis of As 2p3/2 manifests that with the increase of the erosion depth, the concentration of oxidized As grows -- the reaction prompts arsenopyrite to oxidize and generates the oxidation state of As. Due to a mass of oxidized As being transferred to the solution from the As-containing minerals and rocks, the oxidation of arsenopyrite means As would be released into the superficial water and participate in the groundwater circulation, and thus, pose a huge potential threat to the ecological environment.

[1] Brima E.I., Haris P.I., Jenkins R.O., et al., Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom. Toxicology and Applied Pharmacology, 2006, 216(1): 122-130.
[2] Mandal B.K., Ogra Y., Anzai K., et al., Speciation of arsenic in biological samples. Toxicology and Applied Pharmacology, 2004, 198(3): 307-318.
[3] Steinmaus C., Carriagan K., Kalman D., et al., Dietary intake and arsenic methylation in a U.S. population. Environ. Health Perspect, 2005, 113 (9): 1153 - 1159.
[4] Tokunaga H., Roychowdhury T., Uchino T., et al., Urinary Arsenic Species in Arsenic-Affected Area of West Bengal, India(Part II). Journal of health science, 2003, 49(6): 464-474.
[5] Yoshida T., Yamauchi H., and Fan Sun G., Chronic health effects in people exposed to arsenic via the drinking water: dose??ìresponse relationships in review. Toxicology and Applied Pharmacology, 2004, 198(3): 243-252.
[6] Loffredo C.A., Aposhian H.V., Cebrian M.E., et al., Variability in human metabolism of arsenic. Environmental Research, 2003, 92(2): 85-91.
[7] Li X.J., Research progress on toxicity and excretion of arsenic. Research Institute of Poisoning and Toxicology, 2012, 28: 742-744(李羡筠, 砷的毒性及排砷研究进展.职业与健康,2012,28:742-744).
[8] Li Y.M., Guo H.M., and Wang Y.X., Summary of Environmental Chemistry of Waterborne Arsenic Poison. Environmental and Health, 2001, 6: 44-46.(李永敏,郭华明,王焰新等,地方性水砷中毒成因、防治与研究现状.环境保护,2001,6:44-46).
[9] Yu Y., Zhu Y., Williams-Jones A.E., et al., A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Applied Geochemistry, 2004, 19(3): 435-444.
[10] Han Y.L., Study of Typomorphic Characteristics of Pyrite and Arsenopyrite from Ql一1 Gold Deposit in Tolicounty of Xinjiang. Xinjiang Geology, 1991, 9(3): 225-234.(韩玉玲,新疆托里县齐I号金矿黄铁矿、毒砂标型特征研究.新疆地质,1991, 9(3):225-234).
[11] Qiu R.Q., Studies on Leaching of Cobalt and Arsenic from Arsenopyrite with Bacteria. Nonferrous Metals, 1987, 39(1): 51-57.(裘荣庆,细菌浸出毒砂矿中钴和砷的研究.有色金属,1987,39(1):51-57).
[12] Yang R.S., Chen Y.J., and Xie J.L., X-ray photoelectron spectroscopic study on arsenian pyrite and arsenopyrite from the Yangshan gold deposit, Gansu province(North China). Acta Petrologica Sinica, 2009, 25(11): 2791-2800.(杨荣生,陈衍景,谢景林,甘肃阳山金矿含砷黄铁矿及毒砂的XPS研究. 岩石学报,2009,v25(11): 2791-2800).
[13] Ai G.D., Dai T.G., and Chen M.H., Typomorphic Characteristics of Pyrite-Arsenopyrite-Antimonite and Occurrence of Gold in Gold Deposit: A case study of the gold deposits in Hunan Province. Geology and Resources, 2010, 19(2): 157-163.(艾国栋, 戴塔根, 陈明辉, 金矿床中黄铁矿-毒砂-辉锑矿标型及金的赋存状态——以湖南省金矿床为例. 地质与资源,2010: 19(2), 157-163).
[14] Zhu T.T., Lu X.C., Li J., et al., Secondary Minerals on Arsenopyrite Oxidized by Acidithiobacillus ferrooxidans. Acta Mineralogica Sinica, 2011, 31(4): 683-691.(朱婷婷,陆现彩,李娟,陆建军,王汝成,徐兆文,Acidithiobacillus ferrooxidans氧化分解毒砂的次生产物研究. 矿物学报,2011,31(4):683-691).
[15] Hu Y.Q., Yang S.H., and Chen Y.M., Exploration Test on Gold Extraction from Arsenopyrite Gold Concentrate with Oxidation Presure Leaching Proces in Ammonium Thiocyanate-Ammonia System. Nonferrous Metals(Extractive Metallurgy), 2012, 9: 34-37.(胡燕清,杨声海,陈永明,某毒砂金矿硫氰酸盐氨性体系加压氧化提金探索试验. 有色金属(冶金部分), 2012,9: 34-37).
[16] 郑杰, 余大龙, 吴文明, et al., 黔东八克金矿毒砂标型特征研究. 现代地质, 2011, 25(4): 750-758.
[17] Asta M.P., Cama J., Ayora C., et al., Arsenopyrite dissolution rates in O2-bearing solutions. Chemical Geology, 2010, 273(3-4): 272-285.
[18] Lengke M.F. and Tempel R.N., Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment. Geochimica et Cosmochimica Acta, 2005, 69(2): 341-356.
[19] Mihaljevi? M., Ettler V., ?ebek O., et al., Alteration of arsenopyrite in soils under different vegetation covers. Science of the Total Environment, 2009, 408(6): 1296-1294.
[20] Lu X.C. and Wang H., Microbial oxidation of sulfide and the environmental consequences. Elements, 2012, 8: 119-124.
[21] Wang S.H., Wang B., Xu Z.W., et al., Scanning electron microscopy analysis of arsenopyrite monomineral in Dapingshan Copper Deposit. Journal of Geology, 2012, 36(2): 119-128.(王少华,汪斌,徐兆文,陆现彩,王浩,陈猛,朱翔羽,太平山铜矿毒砂单矿物扫描电镜分析.地质学刊,2012.36(2):119-128).
[22] Corkhill C.L. and Vaughan D.J., Arsenopyrite oxidation – A review. Applied Geochemistry, 2009, 24(12): 2342-2361.
[23] Zhang S.S., Zhou H.Y., and Peng X.T., Mechanism of interaction between Acidithiobacillus ferrooxidans and arsenopyrite. Geochimica, 2008, 37(6): 602-614.(张珊珊,周怀阳,彭晓彤,氧化亚铁硫杆菌与毒砂相互作用的阶段性及其机理研究.地球化学,2008,37(6):602-614).
[24] Costa M.C., Botelho do Rego A.M., and Abrantes L.M., Characterization of a natural and an electro-oxidized arsenopyrite a study on electrochemical and X-ray photoelectron spectroscopy. Mineral Processing, 2002, 65: 83-108.
[25] Rimstidt J.D. and Vaughan D.J., Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta, 2003, 67(5): 873-880.
[26] Borda M.J., Strongin D.R., and Schoonen M.A., A vibrational spectroscopic study of the oxidation of pyrite by molecular oxygen. Geochimica et Cosmochimica Acta, 2004, 68(8): 1807-1813.
[27] Nesbitt H.W., Muir I.J., and Pratt A.R., Oxidation of arsenopyrite by air and air-saturated, distilled water,and implications for mechanism of oxidation. Geochimica et Cosmochimica Acta, 1995, 59(9): 1773-1786.
[28] Ruitenberg R., Hansford G.S., Reuter M.A., et al., The ferric leaching kinetics of arsenopyrite.pdf. Hydrometallurgy, 1999, 52: 37-53.
[29] Yu Y., Zhu Y., and Gao Z., Stability of arsenopyrite and As(III) in low-temperature acidic solutions. Science in China Series D, 2004, 47(5): 10.
[30] Walker F., Schreiber M., and Rimstidt J., Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochimica et Cosmochimica Acta, 2006, 70(7): 1668-1676.
[31] McKibben M.A., Tallant B.A., and del Angel J.K., Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. Applied Geochemistry, 2008, 23(2): 121-135.
[32] Mikhlin Y., Romanchenko A., and Asanov I., Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study. Geochimica et Cosmochimica Acta, 2006, 70(19): 4874-4888.
[33] Yu Y., Zhu Y., Gao Z., et al., Rates of Arsenopyrite Oxidation by Oxygen and Fe(III) at pH 1.8?12.6 and 15?45 °C. Environmental Science & Technology, 2007, 41(18): 6460-6464.
[34] Sharma V.K. and Sohn M., Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 2009, 35: 743 - 59.
[35] Cai Y., Pan Y., Xue J., et al., Comparative XPS study between experimentally and naturally weathered pyrites. Applied Surface Science, 2009, 255(21): 8750-8760.
[36] Putnis A., Mineral Replacement Reactions. Reviews in Mineralogy & Geochemistry, 2009, 70: 87-124.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!