南京大学学报(自然科学版) ›› 2013, Vol. 49 ›› Issue (6): 689–.

• • 上一篇    下一篇

铜陵狮子山铜金矿废矿石的矿物组成及其环境意义

李 娟,陆建军*,陆现彩,刘 欢,朱翔宇,欧阳冰洁   

  • 出版日期:2014-01-14 发布日期:2014-01-14
  • 作者简介:南京大学内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,南京,210093

Mineral assemblage of sulfide-bearing waste ores and its environmental implication in Dongguashan Cu-Au Mine, Tongling, Anhui Province

LI Juan, LU Jian-Jun*, LU Xian-Cai, LIU Huan, ZHU Xiang-yu, OUYANG Bing-jie   

  • Online:2014-01-14 Published:2014-01-14
  • About author: (State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, China)

摘要: 矿山废弃物会造成潜在的环境灾害,金属硫化物的氧化是重金属的主要释放源。因此,确定废矿石的次生矿物种类、分布及成因,可对确定控制酸化、释放重金属的矿物提供依据。本文的工作对采自安徽铜陵狮子山铜金矿废石堆的6件样品进行矿物学、地球化学分析,利用X射线衍射仪、扫描电镜、透射电镜对其进行矿物组成、矿物表面显微形貌观察和成分分析。样品中原生矿物主要包括黄铁矿、闪锌矿和石英等,次生矿物主要包含伊利石、钠长石、针铁矿、褐铁矿、赤铁矿、黄钾铁矾等。次生矿物的形成与环境中生物的作用密切相关,在不同的条件下,黄铁矿暴露在矿山环境中,经氧化、储存形成各种形态、不同类别(Fe的硫酸盐类、Fe的氧化物/氢氧化物类)的次生矿物。此过程对形成AMD及重金属元素As的释放造成环境污染起了很大的作用。

Abstract: Abandoned mine-waste dump pose potential environmental hazards. The oxidation of sulfide is the main contributor to the acidification and heavy metal pollution in mine tailings. Therefore, determining which minerals are present , the origin and distribution as well as the cause of formation of the waste ores, understanding the chemical heterogeneity provide evidences for which minerals (control the acidification of water and which soluble minerals contain metals that could be released. Our studies were focused on the mineralogy and geochemistry for six samples originated from the mine-waste dump of the Shizishan sulfide mine in Tongling, Anhui. We carried out XRD, SEM-EDS and TEM analysis to determine the component of the minerals present in the altering waste ores and the morphological features of minerals surface and their element heterogeneity. The major authigenic minerals identified are represented by pyrite, sphalerite and quartz, the secondary minerals are represented by illite, albite, goethite, limonite, hematite and jarosite. Secondary highly complex Fe-minerals are generated from microbial activity. Under different environment and during exposure or storage, pyrite was oxidized to varies of morphological features and sorts (the sulphates minerals and the oxides and hydroxides minerals) of secondary minerals. This process plays a large role in the environmentally damaging phenomenon known as acid mine drainage and releasing of heavy metal As ions.

[1] Al T A, Blowes D W, Martin C J, Cabri L J, Jambor J L. Aqueous geochemistry and analysis of pyrite surface in sulfide-rich mine tailings. Geochimica.et Cosmochimica Acta, 1997, 61(12): 2353-2366.

[2] Apodaca L, Driver N, Bails J. Occurrence, transport and fate of trace elements, Blue River Basin, Summit country, Colorado: An integrated approach. Environmental Geology, 2000, 3(8): 901-913.

[3] Lu J J, LU X C, Zhu C J, et al. The effect of thiobacills ferrooxidans on the distribution of metal trace elements of acid mine drainage resulting in enviromental pollutionJournal of Nanjing University (Nature Sciences) 2005, 41(2)113119(陆建军,陆现彩,朱长见等. 氧化亚铁硫杆菌对矿山酸矿水中金属污染元素分布的影响.南京大学学报(自然科学)200541(2)113 119)

[4] Seal R R, II, Hammarstrom J M. Geoenvironmental models of mineral deposits: examples from massive sulfide and gold deposits. In Environmental Aspects of Mine Wastes (Jambor J L, Blowes D W& Ritchie A I M., eds.). Mineral. Assoc. Can., Short Course Handbook, 2003, 31: 11-50.

[5] 陈天虎 . 矿山尾矿矿物学研究进展 . 安徽地质 ,2001,11(1):64-67

[6] Blowes D W, Ptacek C J and Jurjovec J. Mill tailings: hydrogeology and geochemistry. In Environmental Aspects of Mine Wastes (Jambor J L, Blowes D W& Ritchie A I M., eds.). Mineral. Assoc. Can., Short Course Handbook, 2003a, 31: 95-116.

[7] Olson, G. J. 1991. Rate of pyrite bioleaching by Thiobacillus ferrooxidans: Results of an interlaboratory comparison. Applied and Environmental Microbiology 57, 642-644.

[8] Ehrlich, H.L. 1964. Bacterial oxidation of arsenopyrite and enargite. Economic Geology 59, 1306-1312.

[9] Ehrlich H L. How microbes influence mineral growth and dissolution. Chem Geol 1996 132 : 5-9

[10] Xia, J.L., Yang, Y., He, H., Zhao, X.J, Liang, C.L. , Zheng, L., Ma, C.Y., Zhao, Y.D., Nie, Z.Y., Qiu, G.Z. 2010. Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spectroscopy. Hydrometallurgy 100, 129-135.

[11] 陆建军,陆现彩,王睿勇,等. 多金属矿山环境中矿物的微生物分解及环境效应研究进展. 高校地质 学报, 2007 13(4): 621-629

[12] Fomina M Burford E P Hillier S et al. Rock-building fungi. Geomicrobiology Journal 2010 27: 624-629

[13] 陆现彩,屠博文,朱婷婷,等 . 风化过程中矿物表面微生物附着现象及意义 . 高校地质学报, 2011 17( 1) : 21-28

[14] Balogh-Brunstad Z Keller C K Dickinson J T et al. Biotite weathering and nutrient uptake by ectomycorrhizal fungus Sullus tomentosus in liquid-culture experiments. Geochimica et Cosmochimica Acta 2008 72 ( 11 ) : 2601-2608

[15] Karthe S, Szargan R, Suoninen E. Oxidation of pyrite surface: A photoelectron spectroscopic study. Applied Surface Science , 1993,72:157-170.

[16] Nesbitt H W, Muir I J . X-ray photoelectron spectroscopic studies of a pristine pyrite surface reacted with water vapour and air. Geochimica.et Cosmochimica Acta, 1994, 58(21):4667-4679.

[17] Williamson M A, Rimstidt J D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica.et Cosmochimica Acta, 1994, 58(24): 5443-5454.

[18] Schaufuß A G, Nesbitt H W, Kartio I, Laajalehto K, et al. Incipient oxidation of fractured pyrite surfaces in air. J. of Electron Spectroscopy and Related Phenomena., 1998,96(1): 69-82.

[19] Hochella M F, Jr, Moore J N, Putnis C V , et al. Direct observation of heavy metal – mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability. Geochimica.et Cosmochimica Acta, 2005, 69:1651-1663.

[20] Jacqueline S, Naoki H, Masami T , et al. Carrier- microencapsulation for preventing pyrite oxidation. International Journal of mineral processing, 2007, 83:116-124.

[21] Ward C R. Analysis and significance of mineralmatter in coal seams. International Journal of CoalGeology, 2002, 50: 135–168.

[22] Querol X, Izquierdo M, Monfort E, Alvarez E, Font O, Moreno T, Alastuey A, Zhuang X,Lu W, Wang Y . Environmental characterizationof burnt coal gangue banks at Yangquan,Shanxi Province, China. International Journal of Coal Geology, 2008, 75:93–104.

[23] Haus K L, Hooper R L, Strumness L A, Mahoney J B. Analysis of arsenic speciation in mine contaminated lacustrine sediment using selective sequential extraction, HR-ICPMS and TEM. Applied Geochemistry, 2008, 23: 692–704.

[24] Silva L, Moreno T, Querol Q. An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 2009a, 407: 4972–4974.

[25] Luis F O Silva , Felipe Macias , Marcos L S Oliveira , M. Kátia da Boit , FransWaanders. Coal cleaning residues and Fe-minerals implications. Environ Monit Assess. 2011, 172:367–378

[26] Huang W L, Bishop A M, Brown R W. The effect of fluid/rock ratio on feldspar dissolution and illite formation under reservoir conditions. Clay Minerals (1986), 21: 585-601.

[27] Ha J, Hyun T Y, Wang Y, Musgrave C B, Brow N G E. Adsorption of organic matter at mineral/water interfaces: 7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles. Langmuir, 2008, 24: 6683–6692.

[28] Madden M E E, Bodnar R J, Rimstidt J D. Jarosite as an indicator of waterlimited chemical weathering on Mars. Nature, 2004, 431: 821–823.

[29] Schrenk M O, Edwards K J, Goodman R M, Hamers R J, Banfield J F. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: Implications for generation of acid mine drainage. Science, 1998, 279:1519-1522.

[30] Lu X C, Lu J J, Zhu C J, Liu X D, Wang R C, Li Q, Xu Z W. Preliminary study on surface properties of iron sulfate formed by microbially induced mineralization. Geological Journal of China Universities[J]. 2005, 2:52-56. (陆现彩,陆建军,朱长见,刘显东,王汝成,李奇,徐兆文 . 微生物矿化成因的铁硫酸盐矿物表面特征初探.高校地质学报. 2005 2 52 56 .

[31] Zhu C J, Lu J J, Lu X C, Wang R C, Li Q. SEM study on jarosite mediated by Thiobacillus ferrooxidans. Geological Journal of China Universities. 2005,11(2):234-238. 朱长见,陆建军,陆现彩,王汝成,李奇 . 氧化亚铁硫杆菌作用下形成的黄钾铁矾的 SEM 研究 . 高校地质学报 . 2005,11(2):234-238.

[32] Li J, Lu J J, Lu X C, Wang R C, Su G Z. Experimental study on the oxidation of chalcopyrite by Acidothiobacillus ferrooxidans. Journal of Nanjing University(Natural Sciences). 2009, 45(2):315-322. (李娟,陆建军,陆现彩,王汝成,苏贵珍. 氧化亚铁硫杆菌氧化黄铜矿的实验研究.南京大学学报(自然科学)[J].2009, 45(2):315-322).

[33] 邹知华.加强矿山环境保护促进矿业持续发展.中国矿业, 1994, 3(2) 9-13.

[34] Lu J J, Lu X C, Wang R C, Li J, Zhu C J, Gao J F. Pyrite Surface after Thiobacillus ferrooxidans Leaching at 30°C. Acta Geologica Sinica, 2006, 80(3):451-455.

[35] Waanders F B, Vinken E, Mans A, Mulaba-Bafubiandi A F. Iron minerals in coal, weathered coal and coal Ash-SEM and Moessbauer results. Hyperf ine Interactions, 2003, 148/149(1–4/1–4): 21–29.

[36] Lu L, Wang R C, Chen F R, Xue J Y, Zhang P H, Lu J J. Element mobility during pyrite weathering: implications for acid and heavy metalpollution at mining-impacted sites. Environment Geology. 2005, 49:82-89.

[37] Henao D M O and Godoy M A M. Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans. Hydrometallurgy, 2010. 104(2): 162-168.

[38] Stoffregen R E, Alpers C N, Jambor J L. Alunite-jarosite crystallography, thermodynamics, and geochronology. In C. N. Alpers, et al. (Ed.), Sulfate minerals: Crystallography, geochemistry, and environmental signif icance, reviews in mineralogy. Mineralogical Society of America. 2000, Vol. 40, pp: 453–479.

[39] Zhu W, Young L Y, Yee N, Serfes M, Rhine E D, and Reinfelder J R. Sulphide driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochim. Cosmochim. Acta, 2008. 72: 5243–5250.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!