南京大学学报(自然科学版) ›› 2013, Vol. 49 ›› Issue (6): 665–.

• •    下一篇

三好氧细菌诱导碳酸矿物形成的对比研究

李福春1*,郭文文1, 2   

  • 出版日期:2014-01-14 发布日期:2014-01-14
  • 作者简介:1. 南京农业大学资环与环境科学学院,南京,210095;
    2.枣庄学院,枣庄,277160
  • 基金资助:
    国家自然科学基金(41172308),中国科学院知识创新工程重大项目(KZZD-EW-04),江苏省普通高校研究生科研创新计划项目(CXZZ12-0269)

Three kinds of aerobic bacteria induced mineralization of calcium carbonate Calcium carbonate mineralization induced by three kinds of aerobic bacteria

Li Fu-Chun1, Guo Wen-Wen1, 2   

  • Online:2014-01-14 Published:2014-01-14
  • About author:1. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing,210095, China;
    2. Zaozhuang University, Zaozhuang, 277160, China

摘要: 研究微生物诱导碳酸盐矿物形成的能力对于理解碳酸盐的微生物矿化机理具有重要的意义。微生物参与下碳酸钙系列矿物的形成过程既与微生物本身的性质有关,而且还与物理化学条件密切相关。因而,实验条件相同是对不同微生物矿化能力开展对比研究的前提。目前,针对不同类型微生物的矿化能力而开展的对比研究工作还相当缺乏,相关的认识主要是基于各研究者根据微生物类型来确定实验条件(尤其是培养基成分)进而开展实验所获得的结果。为了对比研究不同微生物在促进碳酸盐矿物形成以及对所形成矿物种类和形态的影响,本文利用从同一土壤样品中分离得到的三种好氧细菌-蜡状芽孢杆菌(GW-1菌株)、赖氨酸芽孢杆菌(GW-2菌株)和微杆菌(GW-3菌株)在B4培养基中、在完全相同的条件下进行了为期40 d的培养实验。测定了沉淀物重量、溶液的pH值和电导率,并利用SEM 和XRD技术对矿物形态和组成进行了观察和测定。实验结果表明:(1)三株细菌均具有诱导碳酸盐矿物形成的能力,其能力的大小顺序为:GW-2菌株>GW-1菌株>GW-3菌株;(2)细菌死亡后的自溶过程使溶液pH值升高;(3)GW-1菌株和GW-2菌株作用下分别形成四方双锥状方解石和半球状方解石,而GW-3菌株则有利于形成球状球霰石。此外,文中还讨论了细菌促进碳酸盐矿物形成的主要过程,认为细菌在新陈代谢过程中将有机氮源转化为NH4+和死亡细菌的自溶可能是导致溶液pH值升高并促进碳酸盐矿物沉淀的主要过程,细菌呼吸作用产生CO2及其后的化学过程是细菌将有机碳源转化为无机碳沉淀的主要途径。

Abstract: Studying on the ability of microbially-induced mineralization for carbonate has important significance to understand the mechanism of carbonate mineralization by microbe. Bacterially-induced mineralization of calcium carbonate not only relates to the genius of bacteria, but also to the physical and chemical conditions. Thus, the requisite precondition for contrastive studying on the mineralization abilities of different microbe is that the set of experiment need to be carried out under the same experimental conditions. However, contrastive works about the abilities of different microbe in respect of carbonate mineralization are rarely involved in the current studies. The related knowledge mainly obtained at the experimental condition (especially the medium components) which was chosen according to the microbial type. In order to comparative studying on the biomineralization capacity of different bacteria and their influence on the mineral species and morphologies, was performed a batch of experiments with a duration of 40 days in B4 medium under the mediation of three kinds of aerobic bacteria—Bacillus cereus (strain GW-1), Lysinibacillus sp. (strain GW-2) and Microbacterium sp. (strain GW-3) isolated from the same soil. Precipitate quantities, pH value and conductivity of the medium were determined, and the morphologies of precipitated carbonates were observed using scanning electron microscopy and mineral species of calcium carbonate were determined by X-ray diffraction. The mainly results are as follows: (1) All three bacterial strains might induce precipitate of calcium carbonate, the mineralization ability is in sequence of GW-2 > GW-1 > GW-3; (2) The autolysis of bacteria cell could increase the pH value of the medium; (3) Strain GW-1 induced the formation of calcite with square dipyramid shape and strain GW-2 induced hemispherical calcite, while strain GW-3 mediated the formation of spherical vaterite. In addition, also was discussed the essential process of bacterially-induced mineralization of carbonate in the paper. The authors consider that organic nitrogen transformed into NH4+ by bacteria in metabolism process and autolysis of dead bacteria might be the main processes of causing pH increasing and carbonate precipitation. The important approach is that organic carbon converted to precipitation of inorganic carbon attributed to the CO2 producing by bacterial respiration and subsequent chemical processes.

[1] Wright D T and Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region , South Australia : Significance and implications. Sedimentology, 2005, 52 (5): 987~1008.

[2] Warthmann R, Vasconcelos C, Sass H, et al. Desulfovibrio brasiliensissp. nov. amoderate halophilic sulfate-reducing bacterium from Lagoa Vermelha ( Brazil) mediating dolomite formation. Extremophiles, 2005, 9 (3): 255~261.

[3] Sánchez-Román M , Romanek C S, Fernández-Remolar D C, et al. Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments. Chemical Geology, 2011, 281: 143~150.

[4] Mitchell A C and Ferris F G. The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiology Journal, 2006, 23: 213~226.

[5] McKay D S, Gibson E K, Thomas-Keprta K L, et al. Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, 273: 924~930.

[6] Morris R V, Ruff S W, Gellert R, et al. Identification of carbonate-rich outcrops on mars by the spirit rover. Science, 2010, 329: 421~424.

[7] Boquet E, Boronat A, Ramos-Cormenzana A. Production of calcite (calcium carbonate) crystals by soil bacteriaisa general phenomenon. Nature, 1973, 246 (5434): 527~529.

[8] Lian, B, Hu Q, Chen J, et al. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochimica et Cosmochimica Acta. 2007, 70: 5522~5535.

[9] Ercole C, Cacchio P, Botta A L, et al. Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis, 2007, 13: 42~50.

[10] Li F C, Ma H, Su N, et al. Clostridium sp. controlled morphology of Mg-bearing calcite and its implication for possible mechanism. Geological Journal of China Universities, 2011, 17 (1): 13~20. ( 李福春 , 马恒 , 苏宁等 . 梭菌对含镁方解石形态的控制及其可能机理 . 高校地质学报 , 2011, 17 (1): 13~20.)

[11] Guo W W, Ma H, Li F C, et al. Clostridium sp. MH18 strain induces the formation of carbonate minerals. Acta Microbiologica Sinica, 2012, 52 ( 2) : 221~227. ( 郭文文 , 马恒 李福春等 . 梭菌 MH18 菌株诱导碳酸盐矿物的形成 . 微生物学报 , 2012, 52 ( 2) : 221~227.)

[12] Obst M, Wehrli B, Dittrich M. CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface induced mechanism. Geobiology, 2009, 7: 323~347.

[13] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 2009, 96: 141~162.

[14] Kim H K, Park S J, Han J I, et al. Microbially mediated calcium carbonate precipitation on normal and lightweight concrete . Construction and Building Materials, 2013, 38: 1073~1082.

[15] Li W, Chen W S, Zhou P P, et al. Influence of initial calcium ion concentration on the precipitation and crystal morphology of calcium carbonate induced by bacterial carbonic anhydrase. Chemical Engineering Journal, 2013, 218: 65~72.

[16] Ramanan R, Kannan K, Deshkar A, et al. Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource Technology, 2010, 101: 2616~2622.

[17] Buczynski C and Chafetz H S. Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy . Sedimentary Research ,1991, 61 (2): 226~233.

[18] Rivadeneyra M A, Delgado G, Ramos-Cormenzana A, et al. Biomineralisation of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: Crystal formation sequence. Research in Microbiology, 1998, 149: 277~287.

[19] Braissant O, Cailleau G, Dupraz C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of xopolysaccharides and amino acids. Journal of Sedimentary Resource, 2003, 73: 485~490.

[20] Rodrigue-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Bacterially mediated mineralization of vaterite. Geochimica et Cosmochimica Acta , 2007, 71 (5): 1197~1213.

[21] Guo W W, Ma H, Li F C, et al. Citrobacter sp. strain GW-M mediates the coexistence of carbonate minerals with various morphologies. Geomicrobiology Journal, 30: 749~757 .

[22] Castanier S, Métayer-Levrel G, Perthuisot J P. Ca-carbonates precipitation and limestone genesis: The microbiogeologist point of view. Sedimentary Geology, 1999: 126 (1-4): 9~23.

[23] Tian Y Q. Research progress of microibe autolysis. Journal of Microbiology, 1997, 17 (2): 52~60. ( 田永强 . 微生物自溶现象研究进展 . 微生物学杂志 , 1997, 17 (2): 52~60.)

[24] Zhou G T, Guan Y B, Yao Q Z, et al. Biomimetic mineralization of prismatic calcite mesocrystals: Relevance to biomineralization. Chemical Geology, 2010, 279: 63~72.

[25] Kralj D, Bre ? evi ? L and Kontrec J. Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation. Journal of Crystal Growth, 1997, 177: 248~257.

[26] Ogino T, Suzuki T and Sawada K. The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta, 1987, 51: 2757~2767.

[27] Cui F Z. Biomineralization. Beijing: Tsinghua Uviversity Press. 2007, 54~64. ( 崔福斋 . 生物矿化 . 北京 : 清华大学出版社 , 2007, 54~64.)

[28] Wang H M, Wu X P, Qiu X, et al. Microbially induced carbonate precipitation: A review. Microbiology China, 2013, 40 (1): 180~189. ( 王红梅 , 吴晓萍 , 邱轩等 . 微生物成因的碳酸盐矿物研究进展 . 微生物学通报 , 2013, 40 (1): 180~189.)

[29] Aloisi G, loter A, Krüger M, et al. Nucleation of calcium carbonate on bacterial nanoglobules . Geology, 2006, 34 (12): 1017~1020.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!