南京大学学报(自然科学版) ›› 2012, Vol. 48 ›› Issue (3): 328–335.

• • 上一篇    下一篇

 Na2CO3 - H2O体系人工流体包裹体中
CO32-离子的显微拉曼光谱研究*

 潘君屹,丁俊英**,倪培*   

  • 出版日期:2015-05-29 发布日期:2015-05-29
  • 作者简介: (南京大学内生金属矿床成矿机制研究国家重点实验室,地球科学与工程学院,南京,210093)
  • 基金资助:
    南京大学内生金属矿床成矿机制研究国家重点实验室研究项日(2008-II-11),南京大学大学生创新训练计划
    项日(XZ1110284009)

 Raman micro-spectroscopy study of carbonate ion
in synthetic fluid inclusions in system Na2C03一H2O

 Pan Jun一Yi,Ding Jun一Ying , Ni Pei
  

  • Online:2015-05-29 Published:2015-05-29
  • About author: (State Key Laboratory for Mineral Deposits Research,School of Earth Sciences and Engineering,
    Nanjing University, Nanjing, 210093,China)

摘要:  本实验利用显微激光拉曼光谱技术,采用可视融合SiO2毛细管样品,在室温(293 K)下,针对200 cm-1~4000cm-1 光谱区间,原位采集了Na2 CO3一H2O体系水溶液包裹体的拉曼光谱.并且,在分析包裹体特征拉曼光谱基础上,对流体包裹体中的CO32一离子浓度开展定量分析工作.实验结果显示,
水溶液包裹体中CO32-离子具有明显的拉曼特征峰,且其特征峰强度随离子浓度的增加而增强.对CO32-离子的定量分析结果,揭示CO32-离子特征峰的强度参数(I)-CO32-离子特征峰和水O- H伸缩振动特征峰而积比—与CO32-离子浓度(c(CO32-))之间存在函数关系:c ( CO32-)=-1224(I)2+132. 4(I)+0.042;同时,也证实水是盐水体系水溶液包裹体拉曼定量分析的合适内标,其与检测物的拉曼强度比是具有定量分析价值的参数;此外,还反映排除主矿物拉曼信号干扰,准确获取CO32-离子拉
曼特征峰有助于流体包裹体中CO32-离子的精确定量.此次研究结果表明显微激光拉曼光谱技术能够有效应用于水溶液流体包裹体中CO32-离子的定量分析,其不失为流体包裹体成分定量分析的一种实用手段.

Abstract:  This work aims to determine the carbonate ion in fluid inclusions by Raman micro-spectroscopy. For this purpose, the technique of optical fused silica capillary was applied to synthesize the fluid inclusions in system Na2CO3一H2Oand Raman micro-spectroscopy was used to in situ collect the Raman spectra of fluids in capillary samples at ambient temperature (293 K) and in the region of 200一4000 cm-1.Also, the concentrations of carbonate ion in fluid inclusions wrere quantified basin on the characterization of Raman spectra of fluid inclusions.The experiments present that the band of CO32- in aqueous inclusions is characterized and the intensity of the band is stronger with the increasing of the concentration of carbonate ion. After the quantitative measurement of the carbonate ion in fluid inclusions, the results reveal:(1)the function relationship between the parameter of intensity of Raman band of CO32- 一(I),which is the ratio of Raman intensity of CO32-band(in 1064cm-1)to that of water band(O一H stretching bands between 2800 and 3800cm-1, and the concentration of carbonate ion (c(CO32一)):
c(CO32-)=-1244(I)+132.4(I)+0.042,(2) the reasonableness to treat water as an internal standard for Raman quantitative measurement of species in salt bearing aqueous inclusions, which is significant to correlate the ratio of Raman intensity of species to that of water with the concentration of species in fluid inclusions,(3) the necessity of good recognition of band CO32-一by removing the signal of host mineral including fluid inclusions,which is helpful to precisely determine the concentration of carbonate ion in fluid inclusions.This study indicates that Raman microspectroscopy can be effectively used to measure the concentration of carbonate ion in aqueous inclusions and it is a valid method for the quantitative measurement of concentrations of species in salt-bearing aqueous inclusions,which may be widely applied to the natural fluid inclusions.

[1]Roedder E. Fluid inclusions, Reviews in miner- alogy. Blacksburg; Mineralogical Society of America, 1984,12:1一644.
[2]Yodnar R J,Burnham C W, Sterner S M. Syn- thetic fluid inclusions in natural quartz III. De termination of phase equilibrium properties in
the system H2O一NaCI to 1000 and 1500 bars. Geochimica ct Cosmochimica Acta, 1985,19: 1861一1873.
[3]Lu H Z,Fan H R,Ni P, et al. Fluid inclu- sions. Beijing; 8cicnce Press, 2004,1一487. (卢焕章,范宏瑞,倪培等.流体包裹体.北京:科学出版社,200, l~487).
[4]Rocdder E,Ingram B, Hall W E. Studies of fluid inclusions(III):Extraction and quantita- tive analysis of inclusion in the milligram range.
Economic Geology, 1963,58:343一374.
[5]Hollister S L, Crawford M L. Short course in fluid inclusion; application to petrology. Miner alogical Association of Canada, 1981,6:13一38.
[6]Shepherd T J,Rankin A H,Aldcrton D H M. A practical guide to fluid inclusions. Glassgow; Blackie,1985,1一239.
[7]Dubessy J,Audeoud D, Wilkins R,et al.The use of the Raman microprobe mole in the deter- mination of electrolytes dissolved in the aqueous
phase of fluid inclusions. Chemical Geology, 1982,37:137一150.
[8]ing J Y,Ni P,Dubessy J,et al. Application of in situ cryogenic Raman spectroscopy to ana- lyze synthetic fluid inclusions in the systems
CaC2一H2Oand MgCl2一H2O I; Cryogenic Raman spectra. Acta Petrologica Sinica, 2008,24; 1961一1967. (丁俊英,倪培,Dubcssy J
等.原位低温拉曼光谱技术在人工合成CaCI2一 H2O和MgCI2一H2O体系流体包裹体分析中的应用I:低温拉曼光谱研究.岩石学报,2008,24:1961一1967).
[9]Ni P,Ding J Y,Dubcssy J,et al. Application of in situ cryogenic Raman spectroscopy to ana- lyze synthetic fluid inclusions in the systems
CaCI2一H2Oand MgCI2一H2OII:Phase trans- formation behavior at lower temperatures. Acta Petrologica Sinica, 2008, 24:1968一1974.(倪
培,J俊英,Dubcssy J等.原位低温拉曼光谱技术在人工合成CaCI2一H2O和MgCI2一H2O体系流体包裹体分析中的应用II:低温下流体包
裹体相变行为的研究.岩石学报,2008, 24; 1968一1974).
[10]Baumgartner M, Bakkcr R J. CaCl2-hydrate nu cleation in synthetic fluid inclusions. Chemical Geology, 2010,265:335一344.
[11]Burke E A J. Raman microspcetrometry of fluid inclusions. Lithos, 2001,55:139一158.
[12]Ni P, Ding J Y,Rao B. In situ cryogenic Ra- man spectroscopic studies on the synthetic fluid inclusions in the systems H2Oand NaCI一H2O.
Chinese Science Bulletin, 2006,51:108一114.
[13]Wu J,Zheng H F. Quantitative measurement of the concentration of sodium carbonate in the system of Na2CO3一H2Oby Raman spectrosco-
py. Chemical Gcology, 2010,273:267一271.
[14]Sun Q, Qin D J. Raman OH stretching band of  water as an internal standard to determine car honate conccntrations.Chemical Geology,2011,283:274~278
[15]Roedder E. Composition of fluid inclusions. U. S. Geological Survey Professional Paper, 1972 440:1一164.
[16]Frantz J D. Kaman spectra if potassium carbon- ate and bicarbonate aqueous fluids at elevated temperatures and pressures:Comparison with
theoretical simulations. Chemical Geology, 1998,152:211一225.
[17]Martinez l,Sanchez-Valle C, Daniel I.,et al. High-pressure and higlrtemperature Raman spectroscopy of carbonate ions in aqueous solu
tion. Chemical Geology, 2004,207:47一58.
[18]Chou l M, Song Y C, Burruss R C. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic
material. Geochimica et Cosmochimica Acta, 2008,72:5217一5231.
[19]Ni P, Ding J Y,Chou l M,et al. A new syn- thetic“fluid inclusion":The technique of optical fused silica capillary. Earth Science Frontiers,
2011, 18; 132-139.(倪培,丁俊英,Chou l M等.一种新型人工“流体包裹体”:融合二氧化硅毛细管技术.地学前缘,2011, 18; 132 - 139).
[20]Ding J Y,Ni P,Guan S J,et al. lrrsitu Raman microspectroscopy study of fluids in the H2O一 CO2 system in optical fused silica capillary. Earth Science Frontiers, 2011,18:140一146. (丁俊英,倪培,管申进等.H2O-CO2:体系融合二氧化硅毛细管样品原位显微激光拉曼光谱研究.地学前缘,2011, 18: 140-146).
[21]Oliver B G, Davis A R. Vibrational spectro scopic studies of aqucous alkali metal bicarbon ate and carbonate solutions. Canadian Journal of
Chemistry, 1973,51:698一702.
[22]Walrafen G E. Raman spectral studies of the effect of electrolytes on water. Journal of Chemical Physics, 1962,36:1035一1042.
[23]Walrafen G E. Raman spectral studies of water structure. Journal of Chemical Physics 1964,40:3249~3256.
[24]Hemley R J,Mao H K,Bell P M, et al. Ra man spectroscopy of SiO2 glass at high pres sure. Physical Review Letters, 1986,57: 747一750.
[25]Yu W, Ni P, Wang G G, et al. Evolution of ore- forming fluids of the Shapinggou porphyry mo- lybdenum deposit,Jinzhai,Anhui province.
Journal of Nanjing University(Natural Sci- ences), 2012,48(3): 240-255.(于文,倪培,土国光等.安徽金寨县沙坪沟斑岩钥矿床
成矿流体演化特征.南京大学学报(自然科学),2012,48 (3):240一255).
[26]Long D A. Raman Spectroscopy. Great Britain; McGraw-Hill International Book Company, 1977,1一276.











No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!