南京大学学报(自然科学版) ›› 2010, Vol. 46 ›› Issue (3): 317–327.

• • 上一篇    下一篇

 台风? 云娜?(2004)的数值模拟:眼墙对流与环境风切变的关系 *

 聂高臻, 谈哲敏** , 仇欣   

  • 出版日期:2015-03-30 发布日期:2015-03-30
  • 作者简介: ( 南京大学大气科学学院中尺度害性天气教育部重点实验室, 南京, 210093)
  • 基金资助:
     国家重点基础研究发展规划项目( 2009CB4251500) , 国家自然科学基金( 40828005, 40921160382) , 国家科技支撑
    计划重点项目( 2006BAC02B03) , 国家公益行业科研专项( GYHY200706020)

  A numerical simulation of typhoon Rananim (2004): The relationship between eyewall convection and the environmental vertical wind shear


 Nie Gao -Zhen, T an Zhe -Min, Qiu Xin
  

  • Online:2015-03-30 Published:2015-03-30
  • About author:(Key Laboratory of Mesoscale Severe Weather of Ministry of Education, and School of Atmospheric Sciences,
    Nanjing University, Nanjing, 210093, China)

摘要:  本文利用中尺度数值模式 WRF, 模拟了台风 云娜( 2004) 在近海加强并登陆的过程. 模拟的台风强度、 路径、 登陆时间和台风登陆前眼墙回波、 水平风场的非对称性特征, 以及登陆时台风眼墙的回
波结构与实际观测结果相近. 台风中不同高度的环境风切变方向有较大差异: 登陆前风切变在低层指向西北, 中层指向东北, 高层指向东南. 涡旋中心倾斜主要受风切变影响; 同时眼墙对流发展与风切变方向
有着较好的对应关系, 而与涡旋倾斜的一致性较差. 登陆前后, 不同高度的环境风切变方向指向相应高度上的上升运动中心. 地形敏感性试验表明地形高度对环境风切变的影响较小, 而对台风涡旋倾斜有较大影响.

Abstract:  In this study, the Weather Research and Forecasting model (WRF) is used to simulate the intensification and landfall of typhoon Rananim ( 2004). The simulated storm agrees well with observations in terms of track,
intensity and the time of landfall. Comparison between simulation and available radar/satellite observations, it is found that the simulation also successfully captured the asymmetric structures in the radar echo and surface wind
field, and especially the eyewall echo structure during Rananim s landfall. The simulation shows that the directions of environmental vertical wind shear vary remarkably with height. Before its landing, the vertical shear vector in the
lower level is northwestward; while in the middle level, the shear vector is northeastward and southeastward in theupper level. T he corresponding vortex tilt is mainly governed by vertical wind shear. Generation of convection is not
signifieantly affected by vortex tilt but agrees well with the direction of vertical shear. Before and after landing, the vertical shear vectors point directly to the updraft center of eyewall in different levels. Sensitivity experiment
suggests that variation of terrain height would make more difference on vortex tilt than on vertical wind shear.

[ 1 ] Wu R S. Preface some problems of typhoon study. Journal of Nanjing University ( Natural Sciences), 2007, 43: 567~ 571. (伍荣生. 台风研究中的一些科学问题. 南京大学学报( 自然科学), 2007, 43: 567~ 571) .
[ 2 ]  Marks F D, Houze R A, Gamache J F. Dua- l aircraft investigation of the inner core of Hurr- i cane Norbert. Part I: Kinematic structure. Journal of the Atmospheric Sciences, 1992, 49: 919~ 942.
[ 3 ] Rogers R, Chen S, T enerelliJ, etal. A numer - ical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie ( 1998). Monthly Weather Review, 2003, 131: 1577~ 1599.
[ 4 ]  Franklin J L, Lord S J, Feuer S E, et al. T he kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwind - sonde and Doppler radar data. Monthly Weather Review, 1993, 121: 2433~ 2451.
[ 5 ] Wong M L M, Chan J C L. Tropical cyclone in - tensity in vertical wind shear. Journal of the At- mospheric Sciences, 2004, 61: 1859~ 1876.
[ 6 ] Jones S C. The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quarterly Journal of the Royal Meteorological Society, 1995, 121: 821~ 851.
[ 7 ]  Wang Y, Holland G J. Tropical cyclone motion and evolution in vertical shear. Journal of the Atmospheric Sciences, 1996, 53: 3313~ 3332.
[ 8 ] Frank W M, Ritchie E A. Effects of environmen - tal flow upon tropical cyclone structure. Monthly Weather Review, 1999, 127: 2044~ 2061.
[ 9 ]  Wu L, Wang B. Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. Journal of the At- mospheric Sciences, 2001, 58: 3639~ 3649.
[ 10]  Frank W M, Ritchie E A. Effects of vertical wind shear on the intensity and structure of nu- merically simulated hurricanes. M onthly Weath- er Review, 2001, 129: 2249~ 2269.
[ 11] Bender M A. The effect of relative flow on the asymmetric structure in the interior of hurr- i canes. Journal of the Atmospheric Sciences, 1997, 54: 703~ 724.
[ 12] Braun S A, M ontgomery M T, Pu Z. High -res- olution simulation of Hurricane Bonnie ( 1998). Part I: The organization of eyewall vertical mo - tion. Journal of the Atmospheric Sciences, 2006, 63: 19~ 42.
[ 13]  Wu L, Braun S A, Halverson J, et al. A nu- merical study of Hurricane Erin ( 2001). Part I: Model verification and storm evolution. Journal of the Atmospheric Sciences, 2006, 63: 65~ 86.
[ 14]  Li Q Q, Duan Y H, Yu H, et al. A high -reso - lution simulation of typhoon Rananim ( 2004) with MM5. part I: model verification, inner - core shear, and asymmetric convection. Month- ly Weather Review, 2008, 136: 2488~ 2506.
[ 15]  Ji L, Fei J F, Huang X G, et al. Numerical simulation of Typhoon Rananim ( 2004) intens- i fication. Scientia Meteorologica Sinica, 2007, 27: 530~ 535. ( 季? 亮, 费建芳, 黄小刚等. 台
风云娜(2004) 近海加强的数值模拟研究. 气象科学, 2007, 27: 530~ 535)
[ 16]  Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 2. NCAR Technique Note. Boulder ( USA) : National Center for Atmospheric Re -search, 2006.
[ 17]  Peng M S, Jeng B F, Williams R T. A numer- i cal study tropical cyclone intensification. Part I: beta effect and mean flow effect. Journal of the Atmospheric Sciences, 1999, 56: 1404~ 1423.
[ 18]  Frank W M, Ritchie E A. Effects of environmen - tal flow upon tropical cyclone structure. Monthly Weather Review, 1999, 127: 2044~ 2061.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!