南京大学学报(自然科学版) ›› 2023, Vol. 59 ›› Issue (5): 890–899.doi: 10.13232/j.cnki.jnju.2023.05.017

• • 上一篇    

无锡浅埋岩溶发育特征及其与隧道安全距离研究

郭书兰1,2, 阎长虹3, 俞良晨3, 闫超1,2(), 李慧4, 徐源4   

  1. 1.智能地下探测技术重点实验室,安徽建筑大学,合肥,230601
    2.安徽建筑大学土木工程学院,合肥,230601
    3.南京大学地球科学与工程学院,南京,210023
    4.南京地铁建设有限责任公司,南京,210008
  • 收稿日期:2023-05-13 出版日期:2023-09-30 发布日期:2023-10-13
  • 通讯作者: 闫超 E-mail:2904655474@qq.com
  • 基金资助:
    国家自然科学基金(42077232);安徽省住房和城乡建设科学技术计划(2022?YF017);安徽建筑大学引进人才及博士启动基金(2022QDZ26)

Characteristics of shallow buried karst and its safety distance to tunnel in Wuxi city, Jiangsu province

Shulan Guo1,2, Changhong Yan3, Liangchen Yu3, Chao Yan1,2(), Hui Li4, Yuan Xu4   

  1. 1.Key Laboratory of Intelligent Underground Detection Technology, Anhui Jianzhu University, Hefei, 230601, China
    2.School of Civil Engineering, Anhui Jianzhu University, Hefei, 230601, China
    3.School of Earth Science and Engineering, Nanjing University, Nanjing, 210023, China
    4.Nanjing Metro Group Co. , Ltd, Nanjing, 210008, China
  • Received:2023-05-13 Online:2023-09-30 Published:2023-10-13
  • Contact: Chao Yan E-mail:2904655474@qq.com

摘要:

在江苏无锡惠山附近修建地铁过程中发现了较多的浅埋岩溶,通过钻孔资料和跨孔地震CT试验对该地的岩溶发育特征进行了详细分析.同时,根据溶洞的大小、位置和填充等情况,将其分为四种类型.为了探讨该场区地铁隧道开挖后的稳定性问题,采用有限差分的方法,研究了隧道与溶洞之间的距离及溶洞填充物对隧道整体稳定性的影响.最后,根据设计规范,确定了隧道与溶洞之间的安全距离.结果表明,场区内大部分溶洞呈扁球形或椭球形,并由含砾石的粉质黏土或淤泥质粉质黏土充填,最发育的溶洞埋深在26~30 m和32~36 m,溶洞直径为1~10 m;综合来看场区内Ⅰ型溶洞对隧道安全施工的威胁最小;四种岩溶类型与隧道之间的安全距离为5 m或≥11 m.本研究成果可为江苏省浅埋岩溶地区其他拟建隧道的设计和施工提供技术参考.

关键词: 无锡地区, 浅埋岩溶, 盾构隧道, 稳定性, 安全距离, 数值模拟

Abstract:

During the construction of subway in Wuxi city,Jiangsu province,shallow karst was found near the Huishan mountain. The karst development characteristics of this karst development area were analysed through borehole data and cross hole seismic CT field test. Based on their size,position,and type of filling,we divided these shallow karst caves into four types. Aimed at exploring the instability of the tunnel after excavation,numerical analyses have been developed by using the Finite difference method. Both the effects of the distance between tunnel and karst caves and the effects of the filling of the cavities on the overall stability of the rock mass around the tunnel have been investigated. According to the design criteria,safety distance between tunnel and karst caves was determined. The results show that most of the karst caves in the site are spheroid or ellipsoid and filled with silty clay or muddy silty clay containing gravel. The burial depth of the most developed karst caves is between 26~30 m and 32~36 m,and the diameter of the karst caves is 1m to 10m; By comparison,the type I karst cave poses the least threat to the safe construction of the tunnel; The safe distance is 5m or ≥ 11m. The research results can provide technical reference for the design and construction of other proposed tunnels in shallow karst areas of Jiangsu province.

Key words: Wuxi city, shallow karst, shield tunnel, stability, safety distance, numerical simulation

中图分类号: 

  • P642

图1

研究区地铁隧道和勘探点平面布置图(a)及典型工程地质剖面图(b)"

图2

研究区三维地形示意图"

图3

钻孔岩溶照片"

图4

跨孔CT探测系统"

图5

基于跨孔CT解译结果的场区岩溶发育图"

表1

场区溶洞分类表"

岩溶类型直径(长轴)溶洞距土岩界面最小距离(m)充填物
≥10 m0.5含砾石粉质黏土
6 m≤上部溶洞长轴<10 m1.0淤泥质粉质黏土全充填
4 m≤下部溶洞长轴<8 m
8 m≤长轴<10 m0.0半充填淤泥质粉质黏土
<4 m0.5无充填

表2

数值模拟工况"

溶洞直径(长轴,m)充填类型隧道底部⁃溶洞顶部的距离D (m)

12

8(上部溶洞)/6(下部溶洞)

8

4

含砾石粉质黏土全充填

淤泥质粉质黏土全充填

半充填淤泥质粉质黏土

空洞

1/3/5/7/9/11/13

1/3/5/7/9/11/13

1/3/5/7/9/11/13

1/3/5/7/9/11/13

图6

四种类型溶洞的数值模拟模型(D=5 m)"

表3

地层物理和力学参数"

地层/充填物厚度(m)密度 (kN·m-³)黏聚力(kPa)摩擦角(°)弹性模量(GPa)剪切模量(GPa)

填土

黏土

3

18.8

18.56

34.2

40.0

12.2

13.6

0.0293

0.04438

0.01007
130.01686
碎石土623.015.034.00.08120.03416
残积土523.04.2838.50.12530.04722
灰岩4524.298.645.30.46310.2219

含碎石粉质黏土(充填物)

淤泥质粉质黏土(充填物)

-

-

18.2

18.0

12.9

10.2

10.8

8.9

0.02427

0.01386

0.00948

0.00778

表4

隧道开挖围岩最大变形值 (mm)"

溶洞类型

D=

1 m

D=

3 m

D=

5 m

D=

7 m

D=

9 m

D=

11 m

D=

13 m

35.9

43.7

43.2

45.8

28.8

32.6

30.2

31.9

21.9

27.2

28.4

27.3

30.2

31.3

30.5

31.2

27.6

29.6

28.2

29.8

23.7

22.0

23.0

24.7

18.0

18.3

17.3

18.0

图7

隧道拱顶沉降位移图"

图8

不同条件下Ⅰ型溶洞引起地表沉降位移云图"

图9

不同条件下Ⅱ型溶洞引起地表沉降位移云图"

图10

不同条件下Ⅲ型溶洞引起地表沉降位移云图"

图11

不同条件下Ⅳ型溶洞引起地表沉降位移云图"

1 Dobashi H, Shiratori A, Miyama D,et al. Design and construction of enlarging shield tunnel sections of large dimensional shield tunnels for the non?open?cut method. Tunnelling and Underground Space Technology2020,DOI:10.1016/j.tust.2005.12.111 .
2 Filippini M, Squarzoni G, De Waele J,et al. Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer. Journal of Hydrology2018(556):572-584.
3 Gong W, Huang H, Juang C H,et al. Improved shield tunnel design methodology incorporating design robustness. Canadian Geotechnical Journal2015,52(10):1575-1591.
4 Alija S, Torrijo F J, Quinta?Ferreira M. Geological engineering problems associated with tunnel construction in karst rock masses:The case of Gavarres tunnel (Spain). Engineering Geology2013(157):103-111.
5 Li X, Li Y. Research on risk assessment system for water inrush in the karst tunnel construction based on GIS:Case study on the diversion tunnel groups of the Jinping Ⅱ Hydropower Station. Tunnelling and Underground Space Technology2014(40):182-191.
6 Ren D J, Shen S L, Cheng W C,et al. Geological formation and geo?hazards during subway construction in Guangzhou. Environmental Earth Sciences2016,75(11):934.
7 Zhang K, Tannant D D, Zheng W B,et al. Prediction of karst for tunnelling using fuzzy assessment combined with geological investigations. Tunnelling and Underground Space Technology2018(80):64-77.
8 常威,谭家华,黄琨,等.地下水多元示踪试验在岩溶隧道水害预测中的应用——以张吉怀高铁兰花隧道为例.中国岩溶2020,39(3):400-408.
Chang W, Tang J H, Huang K,et al. Application of groundwater multi?element tracing tests to water hazard prediction of karst tunnels:An example of the Lanhua tunnel on the Zhangjiajie?Jishou?Huaihua high?speed railway. Carsologica Sinica2020,39(3):400-408.
9 吴远斌,殷仁朝,雷明堂,等.重庆中梁山地区隧道工程影响下岩溶塌陷形成演化模式及防治对策.中国岩溶2021,40(2):246-252.
Wu Y B, Yin R C, Lei Mi T,et al. Triggering factors and prevention?control countermeasures of karst collapses caused by tunnel construction in the Zhongliangshan area,Chongqing. Carsologica Sinica2021,40(2):246-252.
10 杨培涛.穿越溶槽区隧道进出口岩溶的超前探测与分析.工程勘察2021,49(12):68-74.
Yang P T. Advanced detection and analysis on karst in tunnel entrance and exit through karst trough area. Geotechnical Investigation & Surveying2021,49(12):68-74.
11 李向全,马剑飞,张春潮,等.川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究.水文地质工程地质2021,48(5):34-45.
Li X Q, Ma J F, Zhang C C,et al. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan?Xizang Railway. Hydrogeology & Engineering Geology2021,48(5):34-45.
12 Guo S L, Yan C H, Yu L C,et al. Characteristics, factors controlling,and formation of shallow buried karst in eastern China:A case study in the Wuxi metro areas, province Jiangsu. Environmental and Engineering Geoscience2020,DOI:10.2113/eeg-2281 .
13 李华明,张永辉,胡志平,等.峨汉高速庙子坪隧道岩溶发育特征及工程效应分析.中国地质灾害与防治学报,2022,33(1):92-98.
Li H M, Zhang Y H, Hu Z P,et al. Analysis of karst development characteristics and influence of Miaoziping tunnel in E?Han expressway. The Chinese Journal of Geological Hazard and Control,2022,33(1):92-98.
14 柳林,姜伏伟,张发旺,等.岩溶地下工程施工抽水诱发黏土层地面塌陷机理及临界条件探讨.中国岩溶,2019,38(5):752-758.
Liu L, Jiang F W, Zhang F W,et al. Discussion on the mechanism and critical condition of ground collapse of clay layer induced by karst groundwater pumping in underground engineering construction. Carsologica Sinica,2019,38(5):752-758.
15 Li S C, Zhou Z Q, Ye Z H,et al. Comprehensive geophysical prediction and treatment measures of karst caves in deep buried tunnel. Journal of Applied Geophysics,2015(116):247-257.
16 Zini L, Chiara C, Franco C. The challenge of tunneling through Mediterranean karst aquifers: The case study of Trieste (Italy). Environmental Earth Sciences,2015,74(1):281-295.
17 Bizjak K F, Petkov?ek B. Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec. Engineering Geology,2004,75(1):89-106.
18 Alejano L R, Rodríguez?Dono A, Veiga M. Plastic radii and longitudinal deformation profiles of tunnels excavated in strain?softening rock masses. Tunnelling and Underground Space Technology,2012(30):169-182.
[1] 姚启皓, 王伟昊, 尤鸣宇. 基于稳定性优化的三维装配补全方法[J]. 南京大学学报(自然科学版), 2023, 59(5): 742-751.
[2] 李明珊, 王元兵, 王元. 台风“罗莎”影响东北冷涡强降水的机理研究[J]. 南京大学学报(自然科学版), 2022, 58(5): 741-749.
[3] 徐之骁, 漆梁波, 王元. 上海地区三类主要暴雨天气的云微物理和边界层敏感性模拟研究[J]. 南京大学学报(自然科学版), 2022, 58(5): 766-779.
[4] 郑文萍, 刘美麟, 穆俊芳, 杨贵. 一种基于节点稳定性的社区发现算法[J]. 南京大学学报(自然科学版), 2021, 57(1): 101-109.
[5] 骆耀东, 邹海山, 邱小军. 分散式有源声屏障系统稳定性研究[J]. 南京大学学报(自然科学版), 2020, 56(6): 909-916.
[6] 张璐,张熠,周博闻. 水平湍流混合对莫拉克(2009)台风强度及结构的影响[J]. 南京大学学报(自然科学版), 2020, 56(5): 616-629.
[7] 郭小松,赵红丽,贾俊芳,杨静,孟祥军. 密度泛函理论方法研究第一系列过渡金属对甘氨酸的配位能力[J]. 南京大学学报(自然科学版), 2019, 55(6): 1040-1046.
[8] 杨鑫, 施虹, 王平心, 徐刚. 基于稳定性的三支聚类[J]. 南京大学学报(自然科学版), 2019, 55(4): 546-552.
[9] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429-439.
[10] 汪 勇,刘 瑾*,宋泽卓,白玉霞,王琼亚,祁长青,孙少锐. 高分子稳定剂加固河道边坡表层砂土室内试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1095-1104.
[11] 李聪元,杨 帆,张 宁. 不同城市冠层模式对城市地表能量平衡模拟能力的检验[J]. 南京大学学报(自然科学版), 2018, 54(3): 637-654.
[12]  张 弛,陈 干,吴剑锋*,施小清,吴吉春.  基于多点地质统计的二维裂隙网络溶质运移模拟[J]. 南京大学学报(自然科学版), 2016, 52(3): 456-463.
[13]  郭 芳,姜光辉*,于 奭,林玉石.  地下河不同流量状态下溶质运移的参数及模拟[J]. 南京大学学报(自然科学版), 2016, 52(3): 496-502.
[14] 林 巨1* ,赵 越1,王 欢1,陈 鹏2. 基于射线稳定性参数的声传播特性分析[J]. 南京大学学报(自然科学版), 2015, 51(6): 1223-1233.
[15] 贺小桐1,叶淑君1*,于军2,吴吉春1,龚绪龙2. 基于固体颗粒速度场的三维地面沉降模拟[J]. 南京大学学报(自然科学版), 2015, 51(6): 1268-1278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!