南京大学学报(自然科学版) ›› 2023, Vol. 59 ›› Issue (4): 705–712.doi: 10.13232/j.cnki.jnju.2023.04.016

• • 上一篇    下一篇

外尔半金属Co3Sn2S2薄膜的制备和电磁性质研究

李首翰1, 崔驰1, 李威2, 杨燚2, 黄润生1()   

  1. 1.南京大学物理学院,南京,210093
    2.南京大学电子科学与工程学院,南京,210023
  • 收稿日期:2023-03-30 出版日期:2023-07-31 发布日期:2023-08-18
  • 通讯作者: 黄润生 E-mail:rhuang@nju.edu.cn

Thin film preparation and electromagnetic properties of Weyl semi⁃metallic Co3Sn2S2

Shouhan Li1, Chi Cui1, Wei Li2, Yi Yang2, Runsheng Huang1()   

  1. 1.School of Physics, Nanjing University, Nanjing, 210093, China
    2.School of Electronic and Engineering, Nanjing University, Nanjing, 210023, China
  • Received:2023-03-30 Online:2023-07-31 Published:2023-08-18
  • Contact: Runsheng Huang E-mail:rhuang@nju.edu.cn

摘要:

外尔半金属Co3Sn2S2是一种新型的拓扑量子材料,具有独特的拓扑能带结构,被认为是一种非常有潜力的自旋电子材料,而制备电子器件的重要一步是该材料的薄膜化.采用磁控溅射方法分别在SiO2(300 nm)/Si(100)和Al2O3(0001)衬底上生长Co3Sn2S2薄膜.X射线衍射(XRD,X?ray Diffraction)显示Co3Sn2S2薄膜的结构随厚度而变化.在不同衬底上,Co3Sn2S2薄膜的生长情况也不同,较薄的Co3Sn2S2 (<200 nm)适合生长在Al2O3(0001)衬底上,而较厚的Co3Sn2S2 (~5 μm)适合生长在SiO2(300 nm)/Si(100)衬底上.Co3Sn2S2纵向电阻率随着厚度的增加而增加,对导电起主要作用的表面层厚度保持在一定尺度内.

关键词: 外尔半金属, Co3Sn2S2, 磁控溅射法

Abstract:

Weyl semi?metallic Co3Sn2S2 is a new type of topological quantum material with a unique topological band structure,which is considered to be a very potential spintronic material,and an important step in the preparation of electronic devices is the thin?film of the material. In this paper,the magnetron sputtering method is used to grow Co3Sn2S2 films on SiO2(300 nm)/Si(100) and Al2O3(0001) substrates,respectively. X?ray diffraction (XRD,X?ray diffraction) shows that the structure of Co3Sn2S2 films change with the change of thicknes. The growth quality of Co3Sn2S2 films is different for different substrates,thinner Co3Sn2S2 (<200 nm) is suitable for growing on Al2O3(0001) substrates,while thicker Co3Sn2S2 (about 5 μm) is suitable for growing on SiO2(300 nm)/Si(100) substrates. The longitudinal resistivity of Co3Sn2S2 also increases with the increase of thickness,and the thickness of the surface layer,which plays the main role of conductivity,remains at a certain scale.

Key words: Weyl semimetal, Co3Sn2S2, Magnetron sputtering method

中图分类号: 

  • O469

图1

SiO2(300 nm)/Si(100)衬底上Co3Sn2S2厚膜(~5 μm)的XRD谱和文献[13]中Co3Sn2S2粉末的XRD谱"

表1

SiO2(300 nm)/Si(100)衬底上生长的Co3Sn2S2厚膜(~5 μm)的XRD峰的2θ角、d值、晶面指数、相对强度"

2θ (degree)d (Å)I(hkl)
20.1884.39555.2(003)
23.4383.79259.0(012)
33.3812.682100.0(104)
39.4352.28317.9(015)
41.1062.194154.6(006)
47.9621.895214.7(024)
52.5121.74129.8(107)
53.981.69737.8(116)
59.6891.54799.3(018)

图2

Al2O3(0001)衬底上不同厚度Co3Sn2S2薄膜的XRD谱"

图3

不同衬底上Co3Sn2S2厚膜(~5 μm)的XRD谱"

表2

Al2O3(0001)衬底上生长的Co3Sn2S2厚膜的XRD峰的2θ角、d值、晶面指数和相对强度"

2θ (degree)d (Å)I(hkl)
20.134.40742.0(003)
23.4183.795548.0(012)
33.3322.685823.0(104)
39.3692.286811.2(015)
41.0292.1989.9(006)
47.8761.8984100.0(024)
52.4071.74442.4(107)
53.9251.69896.2(116)
59.5981.553.4(018)

图4

面外磁化强度随温度的变化关系"

图5

不同温度下Co3Sn2S2薄膜样品的磁滞回线"

图6

Co3Sn2S2厚膜(~3.7 μm)样品不同频点下的微波响应情况:(a) 5 GHz;(b) 10 GHz;(c) 15 GHz;(d) 20 GHz(a) 5 GHz,(b) 10 GHz,(c) 15 GHz,(d) 0 GHz"

图7

Co3Sn2S2厚膜(~3.7 μm)样品的铁磁共振频率与外磁场的关系"

图8

(a)样品电学性质示意图(蓝色为表面态部分,灰色为体态部分);(b)样品形状尺寸示意图;(c)四探针台"

图9

(a)典型的Co3Sn2S2薄膜(约100 nm)样品电压与电流的关系;(b)Co3Sn2S2薄膜样品电导与厚度的关系"

图10

(a) Co3Sn2S2薄膜纵向电阻率与厚度的关系[17];(b)样品纵向电阻率随厚度变化(b) the sample longitudinal resistivity as a function of thickness"

图11

Co3Sn2S2主要导电层厚度随自身厚度变化图:(a) 300 K;(b) 2 K[16]"

1 Yin J X, Zhang S S, Li H,et al. Giant and anisotropic many?body spin–orbit tunability in a strongly correlated kagome magnet. Nature,2018,562(7725):91-95.
2 Ye L D, Kang M G, Liu J W,et al. Massive Dirac fermions in a ferromagnetic Kagome metal. Nature2018555(7698):638-642.
3 Lin Z, Choi J H, Zhang Q,et al. Flatbands and emergent ferromagnetic ordering in Fe 3 Sn 2 kagome lattices. Physical Review Letters,2018,121(9):096401.
4 Kang M, Ye L, Fang S,et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nature Materials,2020,19(2):163-169.
5 Liu E, Sun Y, Kumar N,et al. Giant anomalous Hall effect in a ferromagnetic kagome?lattice semimetal. Nature physics,2018,14(11):1125-1131.
6 Wang Q, Xu Y, Lou R,et al. Large intrinsic anomalous Hall effect in half?metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nature Communications,2018,9(1):1-8.
7 Kang M, Fang S, Ye L,et al. Topological flat bands in frustrated kagome lattice CoSn. Nature Communications,2020,11(1):1-9.
8 Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non?collinear antiferromagnet at room temperature. Nature,2015,527(7577):212-215.
9 Kuroda K, Tomita T, Suzuki M T,et al. Evidence for magnetic Weyl fermions in a correlated metal. Nature Materials,2017,16(11):1090-1095.
10 Tsai H, Higo T, Kondou K,et al. Electrical manipulation of a topological antiferromagnetic state. Nature,2020,580(7805):608-613.
11 Zhang S S, Yin J X, Ikhlas M,et al. Many?body resonance in a correlated topological kagome antiferromagnet. Physical Review Letters,2020,125(4):046401.
12 Liu D F, Liang A J, Liu E K,et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science,2019,365(6459):1282-1285.
13 Shama, Singh R K. Electrical and magnetic properties of polycrystalline magnetic Weyl semimetal Co3Sn2S2 . AIP Conference Proceedings,AIP Publishing LLC,2019,2115(1):030454.
14 Nagpal V. Breakdown of Ohm's law and nontrivial Berry phase in magnetic Weyl semimetal Co3Sn2S2 . Journal of Physics:Condensed Matter,2020,32(40):405602.
15 Fujiwara K, Ikeda J, Shiogai J,et al. Ferromagnetic Co3Sn2S2 thin films fabricated by co?sputtering. Japanese Journal of Applied Physics,2019,58(5):050912.
16 Ikeda J, Fujiwara K, Shiogai J,et al. Two?dimensionality of metallic surface conduction in Co3Sn2S2 thin films. Communications Physics,2021,4(1):1-6.
17 Ikeda J, Fujiwara K, Shiogai J,et al. Critical thickness for the emergence of Weyl features in Co3Sn2S2 thin films. Communications Materials,2021,2(1):18.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!