南京大学学报(自然科学版) ›› 2023, Vol. 59 ›› Issue (4): 543–549.doi: 10.13232/j.cnki.jnju.2023.04.001

• •    下一篇

基于不确定性估计的推荐系统多任务学习去偏方法

武桐舟1,2, 刘强1,2, 王亮1,2()   

  1. 1.中国科学院大学人工智能学院, 北京, 100190
    2.中国科学院自动化研究所智能感知与计算研究中心, 北京, 100190
  • 收稿日期:2023-06-26 出版日期:2023-07-31 发布日期:2023-08-18
  • 通讯作者: 王亮 E-mail:wangliang@nlpr.ia.ac.cn
  • 基金资助:
    国家自然科学基金(62141608);CCF?蚂蚁科研基金(20210001)

De⁃biasing method for multi⁃task learning in recommender systems based on uncertainty estimation

Tongzhou Wu1,2, Qiang Liu1,2, Liang Wang1,2()   

  1. 1.School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing,100190,China
    2.Center for Research on Intelligent Perception and Computing,Institute of Automation,Chinese Academy of Science,Beijing,100190,China
  • Received:2023-06-26 Online:2023-07-31 Published:2023-08-18
  • Contact: Liang Wang E-mail:wangliang@nlpr.ia.ac.cn

摘要:

推荐系统在互联网应用中扮演重要的角色,它的核心任务是将最相关的物品推荐给用户,然而,由于推荐系统通常在大规模、稀疏和高维的数据集上运行,因此存在严重的偏差问题.近年来,多任务学习成为解决推荐系统偏差的有效方法,它可以同时学习多个相关任务,充分利用数据集的内在结构和相关性,研究人员最近还提出全空间反事实的转化率预测,利用逆倾向得分和双重鲁棒方法对推荐算法的效果进行估计.然而,通过理论分析发现,倾向性分数估计不准确和插值误差往往会导致预估偏差,这在实践中经常发生,影响了推荐的准确性和可靠性.由此,引入不确定性估计,结合多任务学习,通过计算每个用户反馈数据的概率分布来衡量数据的可靠程度,减轻模型在数据稀疏或数据噪声较大时的过拟合问题,有效地提高系统的泛化能力并减少偏差.实验结果表明,加入不确定性估计的多任务学习可以更好地适应不确定性的环境,在推荐系统中有广阔的应用前景.

关键词: 推荐系统, 多任务学习, 双重鲁棒, 逆倾向得分, 不确定性估计

Abstract:

Recommender systems play an important role in internet applications,with the core task of recommending the most relevant items to users. However,the large?scale,sparse,or high?dimensional datasets often lead to serious bias problems. In recent years,multi?task learning has become an effective method for addressing bias in recommender systems,allowing multiple related tasks to be learned simultaneously,thus fully utilizing the intrinsic structure and correlation of the datasets. Researchers recently proposed entire space counterfactual conversion rate prediction,which uses inverse propensity score and doubly robust methods to estimate the performance of recommendation algorithms. However,theoretical analysis has revealed that inaccurate propensity score estimation and interpolation errors often lead to estimation bias,which frequently occurs in practice,thereby affecting the accuracy and reliability of recommendations. We therefore introduce uncertainty estimation,combining multi?task learning to measure the reliability of feedback data by computing the probability distribution for each user,to mitigate model overfitting in sparse or noisy data and effectively improve system generalization to reduce bias. Experimental results show that multi?task learning with uncertainty estimation can better adapt to uncertain environments and has broad prospects in recommender systems.

Key words: recommendation system, multi?task learning, doubly robust, inverse propensity score, uncertainty estimation

中图分类号: 

  • TP389.1

图1

UDR?MTL图解"

图2

不确定性估计说明"

图3

不同超参数对实验效果的影响"

表1

CTR和CVR预估任务在公开数据集Ali?CCP上的性能"

模型AUC (CVR)AUC (CTR)
UDR⁃MTL0.6329±0.00310.611±0.0019
ESMM0.6028±0.01010.6105±0.0121
ESCM²⁃IPS0.6222±0.00700.6106±0.0045
ESCM²⁃DR0.6242±0.00220.6119±0.0021
1 Saito Y, Yaginuma S, Nishino Y,et al. Unbiased recommender learning from missing?not?at?random implicit feedback∥Proceedings of the 13th Inter?national Conference on Web Search and Data Mining. Houston,TX,USA:ACM,2020:501-509.
2 Chapelle O. Modeling delayed feedback in display advertising∥Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,NY,USA:ACM,2014:1097-1105.
3 van den Oord A, Dieleman S, Schrauwen B. Deep content?based music recommendation∥Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe,NV,USA:Curran Associates Inc.,2013:2643-2651.
4 Ma X, Zhao L Q, Huang G,et al. Entire space multi?task model:An effective approach for estimating post?click conversion rate∥The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor,MI,USA:ACM,2018:1137-1140.
5 Wang X J, Zhang R, Sun Y,et al. Doubly robust joint learning for recommendation on data missing not at random∥Proceedings of the 36th International Conference on Machine Learning. Long Beach,CA,USA:PMLR,2019:6638-6647.
6 Ning X, Karypis G. Multi?task learning for recommender system∥Proceedings of the 2nd Asian Conference on Machine Learning. Tokyo,Japan:JMLR,2010:269-284.
7 Tang H Y, Liu J N, Zhao M,et al. Progressive layered extraction (PLE):A novel multi?task learning (MTL) model for personalized recommendations∥Proceedings of the 14th ACM Conference on Recommender Systems. Virtual Event,Brazil:ACM,2020:269-278.
8 Huang J Y, Smola A J, Gretton A,et al. Correcting sample selection bias by unlabeled data∥Proceedings of the 19th International Conference on Neural Information Processing Systems. Vancouver,Canada:MIT Press,2006:601-608.
9 Lee K C, Orten B, Dasdan A,et al. Estimating conversion rate in display advertising from past erformance data∥Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing,China:ACM,2012:768-776.
10 Wang H, Chang T W, Liu T Q,et al. ESCM2:Entire space counterfactual multi?task model for post?click conversion rate estimation∥Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid,Spain:ACM,2022:363-372.
11 Papadopoulos C E, Yeung H. Uncertainty estimation and Monte Carlo simulation method. Flow Measurement and Instrumentation200112(4):291-298.
12 Postels J, Ferroni F, Coskun H,et al. Sampling?free epistemic uncertainty estimation using approximated variance propagation∥Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul,Korea (South):IEEE,2019:2931-2940.
13 Wu P, Li H X, Deng Y H,et al. On the opportunity of causal learning in recommendation systems:Foundation,estimation,prediction and challenges∥Proceedings of the 31st International Joint Conference on Artificial Intelligence. Vienna,Austria:IJCAI,2022:5646-5653.
14 Imbens G W, Rubin D B. Causal inference for statistics,social,and biomedical sciences. New York:Cambridge University Press,2015:625.
15 Saito Y. Doubly robust estimator for ranking metrics with post?click conversions//Proceedings of the 14th ACM Conference on Recommender Systems. Virtual Event,Brazil:ACM,2020:92-100.
16 Schnabel T, Swaminathan A, Singh A,et al. Recommendations as treatments:Debiasing learning and evaluation∥Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York,NY,USA:PMLR,2016:1670-1679.
[1] 韩迪, 陈怡君, 廖凯, 林坤玲. 推荐系统中的准确性、新颖性和多样性的有效耦合与应用[J]. 南京大学学报(自然科学版), 2022, 58(4): 604-614.
[2] 吕亚兰, 徐媛媛, 张恒汝. 一种可解释性泛化矩阵分解推荐算法[J]. 南京大学学报(自然科学版), 2022, 58(1): 135-142.
[3] 武聪, 马文明, 王冰, 朱建豪. 融合用户标签相似度的矩阵分解算法[J]. 南京大学学报(自然科学版), 2022, 58(1): 143-152.
[4] 郝昱猛, 马文明, 王冰. 基于特定用户约束的概率矩阵分解算法[J]. 南京大学学报(自然科学版), 2021, 57(5): 818-827.
[5] 史再峰, 王仲琦, 王宁, 岳玉含, 王子菊. 基于对抗式多任务学习的医学CT图像金属伪影去除方法[J]. 南京大学学报(自然科学版), 2021, 57(3): 482-492.
[6] 袁晓峰, 钱苏斌, 周彩根. 基于填充先验约束的矩阵分解算法[J]. 南京大学学报(自然科学版), 2021, 57(2): 197-207.
[7] 徐媛媛,张恒汝,闵帆,黄雨婷. 三支交互推荐[J]. 南京大学学报(自然科学版), 2019, 55(6): 973-983.
[8] 何轶凡, 邹海涛, 于化龙. 基于动态加权Bagging矩阵分解的推荐系统模型[J]. 南京大学学报(自然科学版), 2019, 55(4): 644-650.
[9] 张燕平1,2张顺1,2钱付兰1,2严远亭1,2. 一种局部和全局用户影响力相结合的社交推荐算法[J]. 南京大学学报(自然科学版), 2015, 51(4): 858-865.
[10]  韦素云1**,业宁1,吉根林2,张丹丹1,殷晓飞1
.  基于项目类别和兴趣度的协同过滤推荐算法*[J]. 南京大学学报(自然科学版), 2013, 49(2): 142-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!