南京大学学报(自然科学版) ›› 2022, Vol. 58 ›› Issue (2): 356–363.doi: 10.13232/j.cnki.jnju.2022.02.019

• • 上一篇    

基于谐振微扰技术的PAM溶液浓度测量方法

熊杰, 肖夏(), 李桥   

  1. 天津市成像与传感微电子技术重点实验室,天津大学微电子学院,天津,300072
  • 收稿日期:2021-10-13 出版日期:2022-03-30 发布日期:2022-04-02
  • 通讯作者: 肖夏 E-mail:xiaxiao@tju.edu.cn
  • 作者简介:E⁃mail:xiaxiao@tju.edu.cn

Measurement method of PAM solution concentration based on resonance perturbation technology

Jie Xiong, Xia Xiao(), Qiao Li   

  1. Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology,School of Microelectronics,Tianjin University,Tianjin,300072,China
  • Received:2021-10-13 Online:2022-03-30 Published:2022-04-02
  • Contact: Xia Xiao E-mail:xiaxiao@tju.edu.cn

摘要:

提出一种基于谐振微扰技术的聚丙烯酰胺(Polyacrylamide,PAM)溶液浓度的测量方法.通过高频结构模型的建立与仿真分析,设计工作频率为7 GHz的TE011模圆柱形谐振腔,在传统微扰理论的基础上考虑材料微扰技术中介质的介电常数变化相对较大时计算值的偏差,并结合形状微扰技术分析电导率对谐振腔谐振频率的影响.结合理论推导与仿真数据获得了修正参数,建立了适用于高损耗溶液介质的微扰数学模型.配制浓度梯度为25 mg·L-1、浓度范围为100~300 mg·L-1的九组PAM溶液,通过矢量网络分析仪(Vector Network Analyzer,VNA)进行实验验证.实验结果表明,谐振腔谐振频率与溶液浓度的对应关系与理论计算一致,浓度测量的总体相对误差低于4.1%,平均测量误差为2.62%.

关键词: 微扰技术, 微波谐振腔, 聚丙烯酰胺溶液, 浓度测量

Abstract:

In this paper,the method for measuring the concentration of polyacrylamide (PAM) solution based on resonance perturbation technology is proposed. The TE011 mode cylindrical resonator with the working frequency of 7 GHz is designed through the establishment and simulation analysis of high frequency structure model. On the basis of the classical perturbation theory,the deviation of the calculated value when the dielectric constant of the medium changes relatively large in the material perturbation technique is considered,and the influence of the conductivity on the resonant frequency of the resonator is analyzed combined with the shape perturbation technique. Combining theoretical derivation and simulation data,the correction parameters are obtained,and the complete perturbation mathematical model suitable for high loss solution medium is established. Nine groups of PAM solutions with concentration gradient of 25 mg·L-1 and concentration range from 100 to 300 mg·L-1 are prepared. Through the vector network analyzer (VNA) for experimental verification,the experimental measurement results show that the corresponding relationship between the resonance frequency of the resonant cavity and the solution concentration is consistent with the theoretical calculation. The overall relative error of concentration measurement is less than 4.1%,and the average measurement error is 2.62%.

Key words: perturbation technology, microwave resonator cavity, polyacrylamide solution, concentration measurement

中图分类号: 

  • TN98

图1

谐振腔结构图"

表1

谐振腔的结构参数"

微扰腔高度

腔体

半径

管内

半径

管外

半径

耦合孔半径
尺寸(mm)56.828.40.81.65.6

图2

溶液管中纵向截面的电场强度分布"

图3

参数α的仿真数据及其拟合曲线"

图4

谐振频率相对变化率与微扰介质电导率的关系"

图5

PAM溶液介电参数的实验测量"

图6

不同浓度溶液下扰动下腔体谐振频率的测量"

图7

不同浓度的PAM溶液在所需频带中的相对介电常数及其线性拟合"

图8

不同浓度的PAM溶液在所需频带中的电导率及其线性拟合"

图9

不同浓度的PAM溶液扰动下的谐振腔S11参数曲线"

表2

基于微扰谐振腔的PAM溶液浓度测量结果与相对误差"

实际值(mg·L-1实验测量值(mg·L-1测量相对误差
平 均2.62%
10096.883.12%
125120.193.85%
150152.491.66%
175177.661.52%
200208.204.10%
225228.461.54%
250256.452.58%
275279.701.71%
300296.731.09%

图10

实验值与不同情况下的理论计算曲线的对比及实验值的线性拟合"

1 Pommella A, Preziosi V, Caserta S,et al. Using optical tweezers for the characterization of polyelectrolyte solutions with very low viscoelasticity. Langmuir,2013,29(29):9224-9230.
2 Seo M S, Youn H J, Lee H L. Penetration control of surface sizing starch using cationic PAM and its effect on the bending stiffness of paper. BioResources,2020,15(3):5489-5502.
3 Keating L R, Lacourse W R. Indirect pulsed electrochemical detection following high?performance reversed?phase liquid chromatography. Talanta,2019(199):155-163.
4 ?rmeci B, DiMassimo R. Dewatering optimization with in?line and real?time measurement of polymer:Results from full?scale treatment plants. Water Science and Technology,2017,76(6):1318-1323.
5 齐晗兵,李舒婷,王秋实,等. 聚丙烯酰胺溶液的光谱特性及其浓度光学检测. 光谱学与光谱分析,2017,37(5):1466-1470.
Qi H B, Li S T, Wang Q S,et al. Optical property and concentration optical detection of polyacrylamide solution. Spectroscopy and Spectral Analysis,2017,37(5):1466-1470.
6 罗春霞,张龙贵,侯家祥,等. 驱油用聚丙烯酰胺分子量测试的光散射研究. 高分子学报,2012(3):313-317.
Luo C X, Zhang L G, Hou J X,et al. Molecular weight characterization of polyacrylamide for oil recovery by multiangle light scattering. Acta Polymerica Sinica,2012(3):313-317.
7 Ishino S. Microwave?heating characteristics of ferrite?particle?containing silicone. IEICE Electronics Express,2019,16(5):20170609.
8 Wang D, Wang Z H, Lee A,et al. Highly sensitive nano?aerosol detection based on the whispering?gallery?mode in cylindrical optical fiber resonators. Aerosol Science and Technology,2016,50(12):1366-1374.
9 Peter R, Fischerauer G. Measurement of axially inhomogeneous permittivity distributions in resonant microwave cavities. IEEE Transactions on Microwave Theory and Techniques,2019,67(6):2433-2442.
10 Chao H W, Chang T H. Wide?range permittivity measurement with a parametric?dependent cavity. IEEE Transactions on Microwave Theory and Techniques,2018,66(10):4641-4648.
11 Steiner C, Malashchuk V, Kubinski D,et al. Catalyst state diagnosis of three?way catalytic converters using different resonance parameters:A microwave cavity perturbation study. Sensors,2019,19(16):3559.
12 Peter R, Fischerauer G. De?embedding method for strongly coupled cavities. IEEE Transactions on Microwave Theory and Techniques,2018,66(4):2025-2033.
13 Yu C Y, Li E, Zhang Z Y,et al. Broadband complex permittivity measurements of nematic liquid crystals based on cavity perturbation method. Liquid Crystals,2020,47(1):89-98.
14 Bonnet M, Burczyński T, Nowakowski M. Sensitivity analysis for shape perturbation of cavity or internal crack using BIE and adjoint variable approach. International Journal of Solids and Structures,2002,39(9):2365-2385.
15 Li Q, Xiao X, Fu H,et al. Glucose solution concentration detection using TE011 microwave resonant cavity. Journal of Electromagnetic Waves and Applications,2018,32(14):1824-1833.
16 Bansal N, Dhaliwal A S, Mann K S. Dielectric characterization of rapeseed (Brassica napus L.) from 10 to 3000 MHz. Biosystems Engineering,2016(143):1-8.
17 Rana V A, Pandit T R. Microwave dielectric relaxation spectroscopy of paracetamol and its aqueous solutions. Journal of Molecular Liquids,2020(314):113673.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!