南京大学学报(自然科学版) ›› 2022, Vol. 58 ›› Issue (2): 345–355.doi: 10.13232/j.cnki.jnju.2022.02.018

• • 上一篇    

宽带低附加相移可变增益放大器

肖慧华1, 马凯学1(), 傅海鹏1, 陆敏2,3   

  1. 1.天津大学微电子学院, 天津, 300072
    2.中兴通讯股份有限公司, 深圳, 518057
    3.移动网络和移动多媒体技术国家重点实验室, 深圳, 518057
  • 收稿日期:2021-10-11 出版日期:2022-03-30 发布日期:2022-04-02
  • 通讯作者: 马凯学 E-mail:makaixue@tju.edu.cn
  • 作者简介:E⁃mail:makaixue@tju.edu.cn
  • 基金资助:
    广东省重点领域研发计划(2019B10156003)

A wideband low additional phase shift variable gain amplifier

Huihua Xiao1, Kaixue Ma1(), Haipeng Fu1, Min Lu2,3   

  1. 1.School of Microelectronics, Tianjin University, Tianjin, 300072, China
    2.ZTE Corporation, Shenzhen, 518057, China
    3.State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen, 518057, China
  • Received:2021-10-11 Online:2022-03-30 Published:2022-04-02
  • Contact: Kaixue Ma E-mail:makaixue@tju.edu.cn

摘要:

基于130 nm BiCMOS(Bipolar Complementary Metal Oxide Semiconductor)工艺提出一款超宽带低附加相移可变增益放大器.该设计采用可变增益放大器和开关衰减器的组合结构,其中可变增益放大器在宽带、高效率的反馈式放大器的基础上通过改变偏置实现增益控制,而开关衰减器的应用在拓宽增益控制范围的同时减小了偏置变化范围,从而减小了不同增益状态下的附加相移.提取版图寄生参数后的仿真结果表明:在1.6 V供电电压下,该可变增益放大器在3.5~11 GHz范围内增益平坦度小于±0.75 dB,增益控制范围为-22~10 dB,增益步进值为0.5 dB,噪声系数小于6.5 dB,不同增益状态下的附加相移小于±5°,电路输出1 dB压缩点大于12 dBm,动态功耗小于155 mW.该可变增益放大器拓扑在满足项目需求的同时为减小可变增益放大器的附加相移提供了一种思路.

关键词: 可变增益放大器, BiCMOS, 附加相移, 宽带

Abstract:

A wideband low additional phase shift variable gain amplifier based on 130 nm BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) process is proposed. The design adopts a combined structure of variable gain amplifer and switching attenuator. The variable gain amplifier is based on a broadband,high?efficiency feedback amplifier,and the gain control is realized by changing the bias current. The application of the switching attenuator broadens the gain range as well as reduces the bias variation range,thus optimizes the additional phase shift under different states. The simulated results after layout parasitic parameters extraction show that,under 1.6 V supply voltage,the gain flatness of the variable gain amplifier is less than ±0.75 dB in the frequency range of 3.5~11 GHz. The gain range is -22~10 dB,and the gain step value is 0.5 dB. The noise figure is less than 6.5 dB,and the additional phase shift under different gain states is less than ±5°. The output power at 1 dB compression point of the circuit is greater than 12 dBm,and the dynamic power consumption is less than 155 mW. This variable gain amplifier topology not only meets the requirements of the project,but also provides an idea for reducing the additional phase shift of the variable gain amplifier.

Key words: variable gain amplifier, BiCMOS, additional phase shift, broadband

中图分类号: 

  • TN722.7

图1

VGA整体框架图(a)及原理图(b)"

图2

FBVGC的原理图(a)及交流小信号模型(b)"

图3

FBVGC最大可用增益仿真结果"

图4

FBVGA及其匹配网络原理图:(a) FBVGA;(b)输入匹配网络;(c)输出匹配网络"

图5

带级间串联电感的两级反馈式可变增益放大器原理图"

图6

带级间串联电感和不带级间串联电感的两级可变增益放大器相位响应对比"

图7

可变增益放大器和开关衰减器组合结构"

图8

8 dB开关衰减器S参数仿真结果"

图9

偏置电路原理图"

图10

电路版图"

图11

VGA的小信号响应"

图12

VGA的温度响应"

图13

不同工艺角下的增益"

表1

VGA的大信号仿真结果"

频率

(GHz)

增益压缩

(dB)

输出功率

(dBm)

直流功耗

(mW)

效率
31.00812.26130.811.72%
51.00713.34150.813.34%
71.00713.55155.213.73%
91.00913.38150.913.57%
111.00913144.612.88%

表2

相似频段VGA性能对比"

参数本文*Shin et al[11]Chen et al[12]Liang et al[18]Sayginer and Rebeiz[19]
工作频带(GHz)3.5~111.6~12.12.2~13.60.8~112~16
增益范围-20~12-18~20-20~1814~20-5~3
增益控制方式(位数)数字(6位)模拟模拟模拟数字(3位)
增益步进(dB)0.5---2
最大增益误差(dB)±0.5---0.5
OP1 dB (dBm)12<-2-3.350

是否优化附加相移

(最大附加相移)

是(±5°)是(3.5°)
噪声系数(dB)76.54.9~6.32.4-
直流功耗(mW)15540259427.5
效率10.6%<1.6%1.9%3.453.65
面积(mm2)0.961.430.58--
工艺0.13 μm BiCMOS0.35 μm BiCMOS0.18 μm CMOS0.15 μm InGaAs pHEMT0.13 μm BiCMOS
1 Zhang Q F, Zhao C X, Yu Y M,et al. A Ka?band CMOS variable gain amplifier with high gain resolution and low phase variation∥2020 IEEE Asia?Pacific Microwave Conference. Hong Kong,China:IEEE,2020:275-277.
2 Lee J G, Jang T H, Park G H,et al. A 60 GHz four?element beam?tapering phased?array transmitter with a phase?compensated VGA in 65 nm CMOS. IEEE Transactions on Microwave Theory and Techniques,2019,67(7):2998-3009.
3 Padovan F, Tiebout M, Neviani A,et al . A 15.5~39 GHz BiCMOS VGA with phase shift compensation for 5G mobile communication transceivers∥ESSCIRC Conference 2016:42nd European Solid?State Circuits Conference. Lausanne,Switzerland:IEEE,2016:363-366.
4 安文星,佟玲,刘亚轩,等. 基于55 nm CMOS工艺的可变增益放大器. 湖南大学学报(自然科学版),2020,47(6):103-108.
An W X, Tong L, Liu Y X,et al. A variable gain amplifier based on 55 nm CMOS process. Journal of Hunan University (Natural Sciences),2020,47(6):103-108.
5 刘智卿. 硅基毫米波接收前端中放大器和混频器集成电路研究. 博士学位论文. 成都:电子科技大学,2018.
Liu Z Q. Research of silicon?based millimeter?wave amplifier and mixer ICs in receiver front?end. Ph.D. Dissertation. Chengdu:University of Electronic Science and Technology of China,2018.
6 Lo P H, Lin C C, Kuo H C,et al. A Ka?band CMOS low?phase?variation variable gain amplifier with good matching capacity∥2012 42nd European Microwave Conference. Amsterdam,Netherlands:IEEE,2012:858-861.
7 Cetindogan B, Ozeren E, Ustundag B,et al. A 6 bit vector?sum phase shifter with a decoder based control circuit for X?band phased?arrays. IEEE Microwave and Wireless Components Letters,2016,26(1):64-66.
8 Padovan F, Tiebout M, Neviani A,et al. A 12 GHz 22 dB?gain?control SiGe bipolar VGA with 2° phase?shift variation. IEEE Journal of Solid?State Circuits,2016,51(7):1525-1536.
9 Hu Z J, Mouthaan K. A 2~6.5 GHz CMOS variable gain amplifier for vector?sum phase shifters∥2012 Asia Pacific Microwave Conference Proceedings. Kaohsiung,Taiwan:IEEE,2012:94-96.
10 Siao D S, Kao J C, Wang H E. A 60 GHz low phase variation variable gain amplifier in 65 nm CMOS. IEEE Microwave and Wireless Components Letters,2014,24(7):457-459.
11 Shin S C, Lin C S, Tsai M D,et al. A low?voltage and variable?gain distributed amplifier for 3.1~10.6 GHz UWB systems. IEEE Microwave and Wireless Components Letters,2006,16(4):179-181.
12 Chen P, Liao Z Y, Kuo C C,et al. A variable gain distributed amplifier with low voltage and low power in 0.18 μm CMOS technology∥2011 41st European Microwave Conference. Manchester,UK:IEEE,2011:1134-1137.
13 Vangerow C V, Stracke D, Kissinger D,et al. Variable gain distributed amplifier with capacitive division∥2018 13th European Microwave Integrated Circuits Conference. Madrid,Spain:IEEE,2018:281-284.
14 Hu J Q, Ma K X, Mou S X,et al. A seven?octave broadband LNA MMIC using bandwidth extension techniques and improved active load. IEEE Transactions on Circuits and Systems I:Regular Papers,2018,65(10):3150-3161.
15 Hu J Q, Ma K X, Mou S X,et al. Analysis and design of a 0.1~23 GHz LNA MMIC using frequency?dependent feedback. IEEE Transactions on Circuits and Systems II:Express Briefs,2019,66(9):1517-1521.
16 Kumar T B, Ma K X, Yeo K S,et al. A 35 mW 30 dB gain control range current mode linear?in?decibel programmable gain amplifier with bandwidth enhancement. IEEE Transactions on Microwave Theory and Techniques,2014,62(12):3465-3475.
17 Razavi B. Design of analog CMOS integrated circuits. The 2nd Edition. New York:McGraw?Hill Education,2016:126-598.
18 Liang Z, Duperrier C, Quintanel S,et al. A 0.8~11 GHz 0.15 μm pHEMT reconfigurable low power consumption distributed low noise amplifier for wireless home networks∥2013 IEEE 11th International New Circuits and Systems Conference. Paris,France:IEEE,2013:1-4.
19 Sayginer M, Rebeiz G M. An eight?element 2~16 GHz programmable phased array receiver with one,two,or four simultaneous beams in SiGe BiCMOS. IEEE Transactions on Microwave Theory and Techniques,2016,64(12):4585-4597.
[1] 周守利, 吴建敏, 张景乐, 陈伟, 王志宇. 1~9 GHz超宽带温度补偿低噪声放大器的设计[J]. 南京大学学报(自然科学版), 2020, 56(6): 892-899.
[2] 李泰安,张为,林建烽,郝东宁. 一种基于有源真时延的低复杂度波束形成器设计[J]. 南京大学学报(自然科学版), 2019, 55(5): 750-757.
[3] 林远鹏,梁彬,杨京,程建春. 可实现宽频宽角度隔声的薄层通风结构[J]. 南京大学学报(自然科学版), 2019, 55(5): 791-795.
[4] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182-1188.
[5] 苏亮又,柏业超*,张兴敢,吴琼. 基于协方差准则迭代估计的雷达回波压缩重构[J]. 南京大学学报(自然科学版), 2015, 51(1): 31-36.
[6]  郭瑞,蔡志明,姜可宇

. 基于宽带模糊函数的线性调频信号速度分辨力分析
[J]. 南京大学学报(自然科学版), 2012, 48(5): 623-631.
[7]  向大威, 许伟杰, 景永刚** .  组合定位系统*

[J]. 南京大学学报(自然科学版), 2011, 47(2): 189-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!