南京大学学报(自然科学版) ›› 2022, Vol. 58 ›› Issue (2): 275–285.doi: 10.13232/j.cnki.jnju.2022.02.011

• • 上一篇    

核化的多视角特权协同随机矢量功能链接网络及其增量学习方法

吴天宇, 王士同()   

  1. 江南大学人工智能与计算机学院, 无锡, 214122
  • 收稿日期:2021-09-24 出版日期:2022-03-30 发布日期:2022-04-02
  • 通讯作者: 王士同 E-mail:wxjn00@163.com
  • 作者简介:E⁃mail:wxjn00@163.com
  • 基金资助:
    国家自然科学基金(61972181)

Kernel Multi⁃view Privileged Random vector functional link net⁃work and its incremental learning method

Tianyu Wu, Shitong Wang()   

  1. School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi,214122,China
  • Received:2021-09-24 Online:2022-03-30 Published:2022-04-02
  • Contact: Shitong Wang E-mail:wxjn00@163.com

摘要:

在许多实际应用场景中,可以从不同层次、不同角度获取相同对象的特征数据,如何有效地利用获取的多视角数据是一个值得研究的问题.和传统的单视角学习相比,多视角学习在多源数据的应用中显示了一定的优势.多角度学习(Multi?View Learning,MVL)面临的一个重要问题是在满足不同视角互补性的前提下如何保持视角之间的一致性.针对以上问题,提出一种新的多视角特权协同核化随机向量功能链接网络(KMPRVFL)来有效地解决多视角分类问题,其基本思想是将冗余视角的额外信息与平均视角上的特权信息相结合来监督当前视角的分类任务,将多视角数据用核化后加权线性组合成综合第二视角.同时,还设计了一种增量学习方法,可以有效地减少计算量.在真实数据集上的实验结果表明,和传统的多视角学习方法相比,KMPRVFL的能力更强,其平均测试精度要优于对比算法.

关键词: 多视角学习, 特权信息, 随机向量函数链接网络, 增量学习

Abstract:

In many practical application scenarios,how to effectively use the multi perspective data obtained from different levels and different angles to obtain the feature data of the same object is a problem worthy of study. Compared with traditional single perspective learning,multi perspective learning shows certain advantages in the ap?plication of multi?source data. An important problem in multi?view learning (MVL) is how to keep the consistency of perspectives while satisfying the complementarity of different perspectives. To solve problems above,a new kernel multi?view privileged random vector functional link network (KMPRVFL) is proposed to effectively solve the multi view classification problem. The basic idea is to combine the extra information of redundant perspective with the privileged information of average perspective to supervise the classification task of the current perspective. The multi?view data is combined into a comprehensive second view by weighted linear combination after kernel. At the same time,an incremental learning method is designed to effectively reduce the amount of calculation. Experimental results on real datasets show that KMPRVFL is more powerful than traditional multi?view learning methods. The average test accuracy of KMPRVFL algorithm is better than that of comparison methods.

Key words: MVL (Multi?View Learning), privileged information, RVFL (Random Vector Functional Link), incremental learning

中图分类号: 

  • TP181

图1

K?RVFL网络的架构"

图2

KMPRVFL结构示意"

表1

实验中用到的数据集"

数据集数量类别数特征1特征2特征3特征4
NUS?wide40897CM55 (225)WT (128)EDH (73)COPR (144)
AwA255606SURF (2000)HOG(252)CHF (2600)ISS (2000)

图3

不同参数下KMPRVFL在NUS?wide数据集上的性能变化"

表2

KMPRVFL和对比算法在NUS?wide数据集上的性能"

Datasets?ADatasets?BKMPRVFLKRVFLMED?2CPSVM?2V
AccuracySTDAccuracySTDAccuracySTDAccuracySTD
Average84.00%0.02377.63%0.01878.23%0.22179.66%0.024
1buildingscomputer83.86%0.02171.93%0.01577.17%0.01578.36%0.012
2buildingselk86.57%0.02281.01%0.01781.04%0.01782.23%0.015
3buildingsfox90.64%0.01382.28%0.03583.41%0.03584.30%0.029
4buildingshorses85.35%0.03076.42%0.01178.87%0.01179.82%0.015
5buildingsmoon83.59%0.02375.16%0.00981.65%0.00978.52%0.020
6buildingsplants85.98%0.01579.19%0.01381.34%0.01382.25%0.007
7buildingsroad72.68%0.01363.93%0.02662.08%0.02665.22%0.027
8computerelk86.12%0.03377.21%0.02577.47%0.02578.66%0.025
9computerfox85.41%0.03176.39%0.03075.18%0.03076.92%0.024
10computerhorses89.04%0.02278.11%0.01281.52%0.01282.90%0.016
11computermoon83.10%0.02876.45%0.02674.64%0.02677.99%0.029
12computerplants87.00%0.01280.68%0.01479.90%0.01481.34%0.013
13computerroad81.36%0.02174.51%0.03470.62%0.03476.17%0.033
14elkfox75.45%0.03068.95%0.02368.57%0.02370.65%0.026
15elkhorses78.88%0.02176.67%0.02375.73%0.02376.74%0.024
16elkmoon87.77%0.02982.68%0.01383.98%0.01384.53%0.025
17elkplants84.77%0.03382.21%0.00983.75%0.00983.09%0.012
18elkroad82.60%0.02278.90%0.03279.24%0.03279.28%0.032
19foxhorses83.80%0.02176.65%0.01877.68%0.01879.99%0.019
20foxmoon86.22%0.02381.94%0.04482.25%0.04483.92%0.045
21foxplants79.83%0.05779.73%0.01473.88%0.01482.31%0.004
22foxroad84.16%0.03378.81%0.03381.67%0.03379.65%0.031
23horsesmoon88.18%0.03382.56%0.02883.76%0.02884.59%0.032
24horsesplants89.15%0.01185.05%0.01285.12%0.01286.73%0.015
25horsesroad80.14%0.01273.94%0.03574.57%0.03575.67%0.039
26moonplants86.90%0.02881.11%0.03382.40%0.03383.03%0.027
27moonroad81.34%0.02774.71%0.01575.23%0.01576.67%0.029
28plantsroad82.13%0.01776.43%0.03177.68%0.03078.97%0.030

表3

KMPRVFL和对比算法在AwA2数据集上的性能"

Datasets?ADatasets?BKMPRVFLKRVFLMED?2CPSVM?2V
AccuracySTDAccuracySTDAccuracySTDAccuracySTD
Average87.41%0.01982.58%0.03179.78%0.03483.59%0.054
1chimpspanda91.01%0.00987.14%0.02786.93%0.02790.92%0.023
2chimpsleopard92.50%0.0186.84%0.01882.80%0.0487.61%0.043
3chimpscat92.18%0.02386.65%0.03482.07%0.04986.52%0.067
4chimpspig89.15%0.0582.09%0.0582.86%0.03383.81%0.056
5chimpshippo89.05%0.01486.84%0.02282.82%0.04384.45%0.063
6chimpsrat89.78%0.02382.36%0.04175.12%0.03581.16%0.082
7chimpsseal91.90%0.01281.46%0.03583.07%0.02687.76%0.016
8pandaleopard92.83%0.01688.84%0.01484.31%0.02690.46%0.012
9pandacat95.05%0.01590.04%0.02688.03%0.0289.53%0.067
10pandapig90.53%0.01483.62%0.02578.83%0.04283.46%0.035
11pandahippo93.89%0.01387.69%0.01887.47%0.00991.13%0.05
12pandarat91.75%0.0285.92%0.04382.25%0.02586.57%0.064
13pandaseal92.62%0.02489.10%0.01786.89%0.03389.63%0.026
14leopardcat91.74%0.01586.94%0.02186.15%0.03390.69%0.045
15leopardpig85.56%0.03782.62%0.02878.53%0.02784.11%0.057
16leopardhippo91.13%0.0183.10%0.02882.54%0.03788.49%0.092
17leopardrat87.58%0.01484.53%0.03380.17%0.0485.21%0.082
18leopardseal90.78%0.01986.47%0.02787.83%0.04588.00%0.091
19catpig84.87%0.03779.27%0.04473.92%0.06176.80%0.055
20cathippo89.57%0.01687.08%0.02985.07%0.03786.29%0.074
21catrat77.01%0.02974.17%0.0462.40%0.02568.46%0.043
22catseal86.52%0.02376.55%0.04482.60%0.03883.68%0.06
23pighippo82.20%0.01977.21%0.05571.42%0.03774.49%0.066
24pigrat73.18%0.02969.21%0.03270.52%0.02574.31%0.08
25pigseal84.59%0.02178.27%0.04571.86%0.03777.08%0.092
26hipporat85.17%0.0282.92%0.01972.94%0.03575.23%0.056
27hipposeal81.41%0.02670.45%0.03467.08%0.0369.48%0.053
28ratseal80.59%0.03677.32%0.04271.96%0.0275.69%0.017

图4

输入样本增量学习的精度折线图"

1 Yang Y, Wang H. Multi?view clustering:A survey. Big Data Mining and Analytics,2018,1(2):83-107.
2 Chen Y F, Li D D, Zhang X,et al. Computer aided diagnosis of thyroid nodules based on the devised small?datasets multi?view ensemble learning. Medical Image Analysis,2021,67:101819.
3 洪思思,曹辰捷,王喆,等. 基于矩阵的AdaBoost多视角学习. 南京大学学报(自然科学),2018,54(6):1152-1160.
Hong S S, Cao C J, Wang J. Matrix?based multi?view learning with AdaBoost. Journal of Nanjing University (Natural Science),2018,54(6):1152-1160.
4 Li J, Allinson N, Tao D C,et al. Multi?training support vector machine for image retrieval. IEEE Transactions on Image Processing,2006,15(11):3597-3601.
5 Sun S L, Shawe?Taylor J. Sparse semi?supervised learning using conjugate functions. Journal of Machine Learning Research,2010(11):2423-2455.
6 Sun S L. Multi?view Laplacian support vector machines∥Proceedings of the 7th International Conference on Advanced Data Mining and Applications. Springer Berlin Heidelberg,2011:209-222.
7 Vapnik V, Vashist A. A new learning paradigm:Learning using privileged information. Neural Networks,2009,22(5-6):544-557.
8 Vapnik V, Izmailov R. Learning using privileged information:Similarity control and knowledge transfer. The Journal of Machine Learning Research,2015,16(1):2023-2049.
9 Evers L, Messow C M. Sparse kernel methods for high?dimensional survival data. Bioinformatics,2008,24(14):1632-1638.
10 Camoriano R. Large?scale kernel methods and applications to lifelong robot learning. 2019,arXiv:.
11 Sun S L, Jin F. Robust co?training. International Journal of Pattern Recognition and Artificial Intelligence,2011,25(7):1113-1126.
12 Cheng J, Wang K Q. Multi?view sampling for relevance feedback in image retrieval∥18th International Conference on Pattern Recognition. Hong Kong,China:IEEE,2006,2:881-884.
13 张丹丹,邓赵红,蒋亦樟,等. 基于划分融合与视角加权的极大熵聚类算法. 计算机工程,2016,10(4):554-564.
Zhang D D, Deng Z H, Wang S T. Maximum entropy clustering algorithm for multi?view data. Journal of Frontiers of Computer Science and Technology,2016,10(4):554-564.
14 Valente F, Wellekens C. Maximum entropy discrimination (MED) feature subset selection for speech recognition∥2003 IEEE Workshop on Automatic Speech Recognition and Understanding. St Thomas,VI,USA:IEEE,2003:327-332.
15 Sun S L, Chao G Q. Multi?view maximum entropy discrimination∥Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Beijing,China:AAAI Press,2013:1706-1712.
16 Chao G Q, Sun S L. Consensus and complementarity based maximum entropy discrimination for multi?view classification. Information Sciences,2016(367-368):296-310.
17 Tang J J, Tian Y J, Liu X H,et al. Improved multi?view privileged support vector machine. Neural Networks,2018(106):96-109.
18 Tang J J, Tian Y J, Zhang P,et al. Multiview privileged support vector machines. IEEE Transactions on Neural Networks and Learning Systems,2018,29(8):3463-3477.
19 Li Y M, Sun H J, Yan W Z,et al. R?CTSVM+:Robust capped L1?norm twin support vector machine with privileged information. Information Sciences,2021(574):12-32.
20 Pao Y H, Park G H, Sobajic D J. Learning and generalization characteristics of the random vector Functional?link net. Neurocomputing,1994,6(2):163-180.
21 Bartlett P L. The sample complexity of pattern classification with neural networks :the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory,March 1998,44(2):525-536.
22 Queipo N V, Haftka R T, Shyy W,et al. Surrogate?based analysis and optimization. Progress in Aerospace Sciences,2005,41(1):1-28.
23 Chua T S, Tang J H, Hong R C,et al. Nus?wide:A real?world web image database from national university of Singapore∥Proceedings of the 8th ACM International Conference on Image and Video Retrieval. Santorini Island,Greece:ACM,2009:1-9.
24 Xian Y Q, Lampert C H, Schiele B,et al. Zero?shot learning:A comprehensive evaluation of the good,the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(9):2251-2265.
[1] 杨梅, 曾雯喜, 方宇, 闵帆. 多示例学习的两阶段实例选择和自适应包映射算法[J]. 南京大学学报(自然科学版), 2022, 58(1): 94-102.
[2] 卢舜, 林耀进, 吴镒潾, 包丰浩, 王晨曦. 基于多粒度一致性邻域的多标记特征选择[J]. 南京大学学报(自然科学版), 2022, 58(1): 60-70.
[3] 吕亚兰, 徐媛媛, 张恒汝. 一种可解释性泛化矩阵分解推荐算法[J]. 南京大学学报(自然科学版), 2022, 58(1): 135-142.
[4] 高菲, 杨柳, 李晖. 开放集识别研究综述[J]. 南京大学学报(自然科学版), 2022, 58(1): 115-134.
[5] 许国强, 余长州, 王林, 周春蕾, 高阳. 一种增强贝叶斯网络结构学习的自动变量序调整算法[J]. 南京大学学报(自然科学版), 2021, 57(2): 255-261.
[6] 周小亮, 吴东洋, 曹磊, 王玉鹏, 业宁. 基于修剪树的优化聚类中心算法[J]. 南京大学学报(自然科学版), 2021, 57(2): 167-176.
[7] 汪敏,赵飞,闵帆. 储层预测的代价敏感主动学习算法[J]. 南京大学学报(自然科学版), 2020, 56(4): 561-569.
[8] 朱荀,刘国强,丁华平,沈庆宏. 一种通过支持向量机对交通拥堵情况进行分类的方法[J]. 南京大学学报(自然科学版), 2020, 56(2): 278-283.
[9] 王卫星,刘兆伟,石敬华. 基于时间敏感滑动窗口的CP⁃nets结构学习[J]. 南京大学学报(自然科学版), 2020, 56(2): 175-185.
[10] 信统昌,刘兆伟. 基于贝叶斯⁃遗传算法的多值无环CP⁃nets学习[J]. 南京大学学报(自然科学版), 2020, 56(1): 74-84.
[11] 郑文萍,刘韶倩,穆俊芳. 一种基于相对熵的随机游走相似性度量模型[J]. 南京大学学报(自然科学版), 2019, 55(6): 984-999.
[12] 黄华娟,韦修喜. 基于自适应调节极大熵的孪生支持向量回归机[J]. 南京大学学报(自然科学版), 2019, 55(6): 1030-1039.
[13] 刘 素, 刘惊雷. 基于特征选择的CP-nets结构学习[J]. 南京大学学报(自然科学版), 2019, 55(1): 14-28.
[14] 贾海宁, 王士同. 面向重尾噪声的模糊规则模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 61-72.
[15] 曲昭伟, 杨凯翔, 王晓茹, 李百威. 基于语义行为和社交关联的好友推荐模型[J]. 南京大学学报(自然科学版), 2018, 54(6): 1124-1131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!