南京大学学报(自然科学版) ›› 2022, Vol. 58 ›› Issue (2): 228–234.doi: 10.13232/j.cnki.jnju.2022.02.006

• • 上一篇    

三水铝石至一水软铝石转化的机制:对铝土矿中一水软铝石成因的启示

陈博1, 陈小明1(), 陈迪云2   

  1. 1.内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,南京,210093
    2.广东省放射性核素污染控制与资源化重点实验室,广州大学环境科学与工程学院,广州,510275
  • 收稿日期:2021-08-03 出版日期:2022-03-30 发布日期:2022-04-02
  • 通讯作者: 陈小明 E-mail:xmchen@nju.com
  • 作者简介:E⁃mail:xmchen@nju.com
  • 基金资助:
    国家自然科学基金(U1501231)

Transformation mechanism of gibbsite to boehmite: Implication for the genesis of boehmite in bauxite

Bo Chen1, Xiaoming Chen1(), Diyun Chen2   

  1. 1.State Key Laboratory for Mineral Deposits Research,School of Earth Sciences and Engineering,Nanjing University,Nanjing 210093,China
    2.Guangdong Provincial Key Laboratory of Radioactive Contamination Control and Resources,School of Environmental Science and Engineering,Guangzhou University,Guangzhou 510275,China
  • Received:2021-08-03 Online:2022-03-30 Published:2022-04-02
  • Contact: Xiaoming Chen E-mail:xmchen@nju.com

摘要:

铝土矿的矿石矿物主要为三水铝石、一水软铝石和一水硬铝石,是化学风化作用的产物,主要形成于炎热而潮湿气候条件下的风化壳中,但不同矿床中的主要矿物组合存在显著差异.其中,一水软铝石既是铝土矿中重要的矿石矿物,也是一种重要的无机新材料,查明该矿物的成因机制对理解铝土矿的成因及其资源的高效利用均有重要的意义.研究表明,细粒三水铝石(D50=0.5 μm)作为前驱体分别在175 ℃的水蒸气和热水中恒温12 h后,三水软铝石消耗殆尽,完全转化为具有完好自形晶体的一水软铝石.粗粒三水铝石(D50=120 μm)在165 ℃的水蒸气中恒温12 h后,在三水铝石的(001)晶面上生长出呈平行四边形板片状形貌的一水软铝石微晶;在175 ℃的热水中恒温12 h后,同样生成了大量平行四边形板片状一水软铝石微晶.一水软铝石晶体的大小和形貌特征表明,三水铝石向一水软铝石的转变受溶解?沉淀机制控制.由此可见,铝土矿中一水软铝石的形成可能与三水铝石的溶解有关,即受控于溶解?沉淀机制.

关键词: 三水铝石, 一水软铝石, 一水硬铝石, 成因机制, 铝土矿

Abstract:

The main ore minerals of bauxite are gibbsite,boehmite and diaspore,which are the products of chemical weathering under hot and humid climate conditions. The mineral constituents and mineral assemblages can be significantly different from one deposit to the other. Among them,boehmite is not only an important ore mineral in bauxite,but also an important inorganic material. Unraveling the genetic mechanism of this mineral is of significance to understand the genesis of bauxite and the efficient utilization of resources. In this study,the fine?grained gibbsite (D50=0.5 μm) was used as the precursor for the transformation experiments that were conducted in water vapor and hot water at 175 ℃ for 12 h,respectively. Our characterizations of the obtained products show that gibbsite was completely transformed into boehmite with intact idiomorphic morphology. In the case of the coarse?grained gibbsite (D50=120 μm) that was hydrothermally treated in water vapor at 165 ℃ for 12 h,boehmite microcrystals with parallelogram plate morphology formed on the (001) crystal plane of gibbsite. Similarly,after treated in hot water at 175 ℃ for 12 h,a large number of parallelogram plate?like boehmite microcrystals formed. The size and morphology of the resulting boehmite crystals suggests that the transformation from gibbsite to boehmite was controlled by the dissolution?precipitation mechanism. These observations imply that the formation of boehmite in bauxite might be related to the dissolution of gibbsite,i.e.,a dissolution?precipitation mechanism is involved in the transformation.

Key words: gibbsite, boehmite, diaspora, formation mechanism, bauxite

中图分类号: 

  • P571

图1

细粒三水铝石转化成一水软铝石的SEM图和XRD图(A)细粒三水铝石的SEM图;(B)细粒三水铝石在水蒸气中转化成一水软铝石的SEM图;(C)细粒三水铝石在热水中转化成一水软铝石的SEM图;(D)细粒三水铝石和转化成一水软铝石的XRD图"

图2

粗粒三水铝石处理前和处理后的SEM图和XRD图(A)粗粒三水铝石的SEM图;(B,C)在165 ℃水蒸气中恒温12 h后粗粒三水铝石的SEM图;(D,E)在175 ℃热水中恒温12 h后粗粒三水铝石的SEM图;(F)粗粒三水铝石处理前和处理后的XRD图"

1 杨卉芃,张亮,冯安生,等. 全球铝土矿资源概况及供需分析. 矿产保护与利用,2016(6):64-70.
Yang H, Zhang L, Feng A,et al. Study on general situation and analysis of supply and demand of global bauxite resources. Conservation and Utilization of Mineral Resources,2016(6):64-70.
2 刘长龄. 论铝土矿的成因学说. 河北地质学院学报,1992(2):195-204.
Liu C. On the theory of bauxite genesis. Journal of Hebei College of Geology,1992(2):195-204.
3 程东,沈芳,柴东浩. 山西铝土矿的成因属性及地质意义. 太原理工大学学报,2001(6):576-579.
Cheng D, Shen F, Cai D. Genetic attribute and geological significance of bauxite ores in Shanxi. Journal of Taiyuan University of Technology,2001(6):576-579.
4 李启津,杨国高,侯正洪. 铝土矿床成矿理论研究中的几个问题. 矿产与地质,1996(1):22-26.
5 潘昭帅,张照志,张泽南,等. 中国铝土矿进口来源国国别研究. 中国矿业,2019,28(2):13-17.
Pan Z S, Zhang Z Z, Zhang Z N,et al. Analysis of the import source country of the bauxite in China. China Mining Magazine,2019,28(2):13-17.
6 许斌. 新形势下我国铝土矿行业发展战略. 轻金属,2018(2):6-8.
7 Mathieu Y, Lebeau B, Valtchev V. Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions. Langmuir,2007,23(18):9435-9442.
8 Panasyuk G P, Belan V N, Voroshilov I L,et al. Hydrargillite → boehmite transformation. Inorganic Materials,2010,46(7):747-753.
9 王碧武,奚龙,杨虎,等. 勃姆石在覆铜板中的应用研究. 印制电路信息,2013(9):13-15.
Wang B W, Xi L, Yang H,et al. The application study of Boehmite in CCL. Printed Circuit Information,2013(9):13-15.
10 张鹏,彭龙庆,沈秀,等. 锂离子电池功能隔膜的研究进展. 厦门大学学报(自然科学),2021,60(2):208-218.
Zhang P, Peng L Q, Shen X,et al. Research progress in the functional separator for lithium?ion battery. Journal of Xiamen University (Natural Science),2021,60(2):208-218.
11 Wang H P, Xu B G, Smith P,et al. Kinetic modelling of gibbsite dehydration/amorphization in the temperature range 823~923 K. Journal of Physics and Chemistry of Solids,2006,67(12):2567-2582.
12 Mishra D, Anand S, Panda R K,et al. Hydrothermal preparation and characterization of boehmites. Materials Letters,2000,42(1-2):38-45.
13 Panda P K, Jaleel V A, Devi S U. Hydrothermal synthesis of boehmite and alpha?alumina from Bayer's alumina trihydrate. Journal of Materials Science,2006,41(24):8386-8389.
14 Candela L, Perlmutter D D. Kinetics of boehmite formation by thermal decomposition of gibbsite. Industrial & Engineering Chemistry Research,1992,31(3):694-700.
15 Lopushan V I, Kuznetsov G F, Pletnev R N,et al. Kinetics of phase transitions of gibbsite during heat treatment in air and in water vapor. Refractories and Industrial Ceramics,2007,48(5):378-382.
16 Alemi A, Hosseinpour Z, Dolatyari M,et al. Boehmite (γ?AlOOH) nanoparticles:Hydrothermal synthesis,characterization,pH?controlled morphologies,optical properties,and DFT calculations. Physica Status Solidi B,2012,249(6):1264-1270.
17 Chen B, Xu X, Chen X,et al. Transformation behavior of gibbsite to boehmite by steam?assisted synthesis. Journal of Solid State Chemistry,2018(265):237-243.
18 Tsuchida T. Hydrothermal synthesis of submicrometer crystals of boehmite. Journal of the European Ceramic Society,2000,20(11):1759-1764.
19 廖士范,梁同荣. 中国铝土矿地质学. 贵州,中国:州科技出版社,1991.
20 廖士范. 论铝土矿床成因及矿床类型. 华北地质矿产杂志,1994(2):153-160.
21 柳建春,黄宝贵. 红土型铝土矿中三水铝石的分离方法研究. 岩矿测试,1995(3):161-165.
Liu J C, Huang B G. An investigation on the separation of hydrargillite in reddle type alumyte. Rock and Mineral Analysis,1995(3):161-165.
22 谌建国,刘云华,许俊文. 广西两种三水铝石铝土矿成矿的差异性. 地学前缘,1999(S1):251-256.
Chen J G, Liu Y H, Xu J W. Differences of mineralization of two gibbsite bauxites in Guangxi province. Earth Science Frontiers,1999(S1):251-256.
23 De Ronde C, Humphris S, Hofig T,et al. Critical role of caldera collapse in the formation of seafloor mineralization:The case of Brothers volcano. Geology,2019,doi:10.1130/G46047.1 .
24 王庆飞,邓军,刘学飞,等. 铝土矿地质与成因研究进展. 地质与勘探,2012,48(3):430-448.
Wang Q F, Deng J, Liu X F,et al. Review on research of bauxite geology and genesis in China. Geology and Prospecting,2012,48(3):430-448.
25 张文旭. 论山西省河东地区保德?兴县一带铝土矿资源特征. 华北国土资源,2015(2):85-88.
26 蒋文钰,代丽芬,欧阳月娣. 铝土矿成因与矿石类型关系的探讨. 南方国土资源,2013(1):39-41.
[1]  林文荣1,2,殷 勇1,2*,于 革3,赵媛媛4.  扬子浅滩MIS6阶段以来沉积地层及环境演变[J]. 南京大学学报(自然科学版), 2017, 53(5): 912-.
[2]  张雪芬1,陆现彩1**,刘庆2,张林哗2,李娟1,马野牧1,张立虎1
.  东营凹陷沙河街组砂岩中自生高岭石特征及其成因探讨*[J]. 南京大学学报(自然科学版), 2013, 49(3): 331-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!