南京大学学报(自然科学版) ›› 2022, Vol. 58 ›› Issue (2): 219–227.doi: 10.13232/j.cnki.jnju.2022.02.005

• • 上一篇    

基于随机梯度下降算法实现对环上量子游走的动态完全控制

邵玉豪, 林嘉懿, 吴盛俊()   

  1. 南京大学物理学院,南京,210093
  • 收稿日期:2021-02-09 出版日期:2022-03-30 发布日期:2022-04-02
  • 通讯作者: 吴盛俊 E-mail:sjwu@nju.edu.cn
  • 作者简介:E⁃mail:sjwu@nju.edu.cn
  • 基金资助:
    国家自然科学基金(11475084)

Dynamic control of full quantum walk on a cycle based on stochastic gradient descent algorithm

Yuhao Shao, Jiayi Lin, Shengjun Wu()   

  1. Department of Physics, Nanjing University, Nanjing,210093, China
  • Received:2021-02-09 Online:2022-03-30 Published:2022-04-02
  • Contact: Shengjun Wu E-mail:sjwu@nju.edu.cn

摘要:

寻找如何实现幺正量子操作是量子计算领域的基本问题,主要研究通过环上的离散时间量子游走实现任意幺正量子操作的可能.首先推广引入了特殊的环上的离散时间量子游走模型,并对模型实现任意量子操作的有效性进行了探讨.对于两量子比特的量子系统,给出了通用量子门集合与量子傅里叶变换的构造解.由于高维情况构造解较难精确给出,引入机器学习中常用的随机梯度下降算法,得以在高维系统近似实现所需要的幺正量子操作.此外,如对算法进行进一步微调,可以在位置空间上的实现任意的幺正量子操作以及两结果半正定算子测量.在高维情况下,这意味着通过控制两能级的硬币系统即可控制位置空间上大型系统,从而实现小系统对大系统的间接完全控制.这些任务的完成表明,基于随机梯度下降算法可以实现对整个环上量子游走过程的动态完全控制.

关键词: 环上的量子游走, 随机梯度下降, 幺正操作, 半正定算子测量, 动态控制

Abstract:

Finding implementations of unitary operations is a fundamental task in the field of quantum computation. This letter mainly investigates the ability of the discrete time quantum walk on a cycle for this task. First,we introduce a special discrete time quantum walk on a cycle model,and then discuss the effectiveness and feasibility of the model in achieving arbitrary unitary quantum operations. For two qubits system,the empirical solutions of the universal quantum gate set and quantum fourier transform are presented. Due to the difficulty of exactly giving the empirical solutions in high?dimensional cases,we would introduce the stochastic gradient descent algorithm which is commonly used in machine learning to find approximations to arbitrary desired unitary operations. Then,we would manage to modify the stochastic gradient descent algorithm in order to realize arbitrary unitary quantum operations and 2?outcome POVMs on the position space effeciently. In high?dimensional cases,it means one can control a large system via the discrete time quantum walk on a cycle indirectly on the basis of controlling the 2?level coin system. The completion of these tasks shows that we can achieve dynamic control of full discrete time quantum walk on a cycle based on the stochastic gradient descent algorithm.

Key words: quantum walk on a cycle, stochastic gradient descent algorithm, unitary operations, POVM, dynamic control

中图分类号: 

  • O413.1

图1

环上离散时间量子游走过程的示意图对量子游走系统的位置按顺时针编号.其中,红色的“0”和蓝色的“1”组合表示每一步的硬币算符作用在两能级的量子系统上.绿色的箭头表示硬币叠加态随硬币算符的作用而改变.而红色与蓝色的箭头表示当硬币态不同时,游走态分别保持不动,或者顺时针平移一步"

表1

一步量子游走实现CNOT门的构造解"

x

t

0
0I?c
1I?c

表2

两步量子游走实现V?=U?c?I?p的构造解"

x

t

01
0U?cI?c
1U?cI?c

表3

四步量子游走实现V?=I?c?U?p的构造解"

x

t

0123
0I?cu00u01u01?-u00?I?cI?c
1X?cu00?-u01?u01u00(u00u11-u01u10)0-110I?c

表4

当单粒子量子门为对角阵时,仅需两步量子游走即可实现V?=I?c?U?p"

x

t

01
0u00I?cI?c
1u11I?cI?c

表5

两步量子游走实现相位门的构造解"

V?=U?c?I?pt=0t=1V?=I?c?U?pt=0t=1
x=0PhaseI?cx=0I?cI?c
x=1PhaseI?cx=1i?I?cI?c

图2

量子傅里叶变换的线路示意图"

表6

三步量子游走实现量子傅里叶变换的构造解"

x

t

012
0H?cH?cI?c
1121-11112i1-i1I?c

图3

在高维系统实现量子傅里叶变换横轴和纵轴分别对应于更新次数和距离.绘制的每条线都是平行取样训练的多个样本在同一更新次数下,距离(所需实现的量子操作V?和U?T,0之间)的最差值(左图)或平均值(右图).对于不同的n,我们想要实现的量子操作为V?=QFT.通过随机梯度下降在更高维度实现需要的幺正变换是非常可行的."

图4

利用随机梯度下降算法可以在位置空间实现任意的幺正过程左图,横轴和纵轴分别对应于更新次数和距离.绘制的每条线都是平行取样训练的多个样本在同一更新次数下,距离(所需实现的量子操作V?和U?T,0之间)的最差值或平均值.右图,横轴和纵轴分别对应训练完成后的距离以及百分比情况.直方图显示了样本训练完成后的距离分布,红线则显示训练后距离大于横轴对应值的样本分布情况.上图表明,环上的量子游走模型可以在很好的精度上模拟实现位置空间上任意的幺正演化过程."

图5

利用随机梯度下降算法可以在位置空间实现任意两结果半正定算子测量左图,横轴和纵轴分别对应于更新次数和距离.绘制的每条线都是平行取样训练的多个样本在同一更新次数下,距离(所需实现的量子操作V?和U?T,0之间)的最差值或平均值.右图,横轴和纵轴分别对应训练完成后的距离以及百分比情况.其中直方显示了样本训练完成后的距离分布,红线则显示训练后距离大于横轴对应值的样本分布情况.对于随机取样的150对要实现的两结果半正定算子测量,都可以通过随机梯度下降算法动态控制实现."

1 Aharonov Y, Davidovich L, Zagury N. Quantum random walks. Physical Review A,1993,48(2):1687-1690.
2 Kempe J. Quantum random walks:An introductory overview. Contemporary Physics,2003,44(4):307-327.
3 Kitagawa T, Rudner M, Berg E,et al. Exploring topological phases with quantum walks. Physical Review A,2010,82(3):33429.
4 Xue P, Qin H, Tang B,et al. Observation of quasiperiodic dynamics in a one?dimensional quantum walk of single photons in space. New Journal of Physics,2014,16(5):053009.
5 Crespi A, Osellame R, Ramponi R,et al. Anderson localization of entangled photons in an integrated quantum walk. Nature Photonics,2013,7(4):322.
6 Oliveira A C, Portugal R, Donangelo R. Decoherence in two?dimensional quantum walks. Physical Review A,2006,74(1):012312.
7 Segawa E. Localization of quantum walks induced by recurrence properties of random walks. Journal of Computational and Theoretical Nanoscience,2013,10(7):1583-1590.
8 Childs A M. Universal Computation by quantum walk. Physical Review Letters,2009,102(18):25-28.
9 Childs A M, Gosset D, Webb Z. Universal computation by multiparticle quantum walk. Science,2013,339(6121):791-794.
10 Lovett N B, Cooper S, Everitt M,et al. Universal quantum computation using the discrete?time quantum walk. Physical Review A,2010,81(4):042330.
11 Wang J, Manouchehri K. Physical implementation of quantum walks. Springer Berlin,2013.
12 Darken C, Chang J, Moody J. Learning rate schedules for faster stochastic gradient search∥Neural Networks for Signal Processing Ⅱ Proceedings of the 1992 IEEE Workshop. Helsingoer,Denmark:IEEE Press,1992:3-12.
13 Bengio Y, Boulanger?Lewandowski N, Pascanu R. Advances in optimizing recurrent networks∥2013 IEEE International Conference on Acoustics,Speech and Signal Processing. Vancouver,Canada:IEEE Press,2013:8624-8628.
14 Nielsen M A, Chuang I. Quantum Computation and Quantum Information:The 10th Anniversary Edition. Cambridge,United Kingdom:Cambridge University Press,2011.
15 Dawson C M, Nielsen M A. The solovay?kitaev algorithm. arXiv preprint quant?ph/0505030,2005.
16 Coppersmith D. An approximate Fourier transform useful in quantum factoring. arXiv preprint quant?ph/0201067,2002.
17 Hales L, Hallgren S. An improved quantum Fourier transform algorithm and applications∥Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Redondo Beach,CA,USA:IEEE Press,2000:515-525.
[1] 余方超, 方贤进, 张又文, 杨高明, 王丽. 增强深度学习中的差分隐私防御机制[J]. 南京大学学报(自然科学版), 2021, 57(1): 10-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!