南京大学学报(自然科学版) ›› 2022, Vol. 58 ›› Issue (2): 183–195.doi: 10.13232/j.cnki.jnju.2022.02.001

• •    

高维集成光量子技术

陈志宇1,2, 陆亮亮1,2,3()   

  1. 1.南京大学物理学院,南京,210023
    2.固体微结构物理国家重点实验室,南京大学,南京,210093
    3.江苏省光电技术重点实验室,南京师范大学物理科学与技术学院,南京,210023
  • 收稿日期:2021-10-21 出版日期:2022-03-30 发布日期:2022-04-02
  • 通讯作者: 陆亮亮 E-mail:lianglianglu@nju.edu.cn
  • 作者简介:E⁃mail:lianglianglu@nju.edu.cn
  • 基金资助:
    国家自然科学青年基金(11804153)

High⁃dimensional integrated quantum photonic technology

Zhiyu Chen1,2, Liangliang Lu1,2,3()   

  1. 1.School of Physics,Nanjing University,Nanjing,210023,China
    2.Naional Laboratory of Solid State Microstructure,Nanjing University,Nanjing,210093,China
    3.Jiangsu Key Laboratory of Optoelectronic Technology,School of Physics Science and Technology,Nanjing Normal University,Nanjing,210023,China
  • Received:2021-10-21 Online:2022-03-30 Published:2022-04-02
  • Contact: Liangliang Lu E-mail:lianglianglu@nju.edu.cn

摘要:

光量子系统在量子技术中的作用至关重要,伴随光子集成技术的发展,光量子集成被认为是推进量子信息技术的重要途径.同时,量子纠缠是量子信息处理中重要的物理资源,其中高维纠缠的量子系统与二维系统比较,具有更为独特的优势.然而,随着维度的增加,高维量子纠缠态的产生和操控也面临挑战.综述近年来高维集成量子技术的相关研究,先回顾不同自由度片上高维纠缠态制备方案,再从量子光源、可重构量子调控、前沿量子信息应用等三个方面分别进行分析和总结.在量子光源方面,重点对产生非线性效应、光源结构和产生纠缠方式进行说明,并对其适用性和优势进行分析;在可重构量子调控中,针对基本操控单元、通用操控线路和结构改进三个方面进行综述,阐述面临的困难和目前的解决思路;最后,对集成高维光量子纠缠态在各个领域的应用场景进行归纳,并对未来的发展做出展望.

关键词: 量子纠缠, 高维纠缠, 光学芯片, 光量子技术, 量子信息

Abstract:

Quantum photonic systems play a vital role in quantum technologies. With the development of integrated optical technology,integrated quantum photonics has become an important way to advance quantum information processing. Meanwhile,entanglement is a crucial physical resource in quantum information science and high?dimensional entangled quantum systems have more unique advantages than two?dimensional systems. Generating and manipulating high?dimensional entangled quantum states is a key topic in quantum?enhanced computation and communication. However,with dimensionality increasing,preparing and controlling high?dimensional quantum entangled states also face challenges. This review summarizes research on high?dimensional integrated quantum photonic technology in recent years. Firstly,we review the preparation schemes of high?dimensional entangled states on optical chips with different degrees of freedom,and then we analyze and generalize the three aspects of quantum source,reconfigurable quantum control and cutting?edge quantum information applications. In terms of on?chip quantum source,it focuses on explaining nonlinear effect,quantum source structure,and methods to generate entanglement,analyzing their applicability and advantages. In terms of reconfigurable quantum control,it summarizes three aspects of basic processing units,universal processing circuits,and structural improvements. It explains the difficulties faced and the current solutions. Finally,the application scenarios of integrated high?dimensional quantum entangled states in various fields are reviewed,and prospects for future development are made.

Key words: quantum entanglement, high?dimensional entanglement, photonic chip, quantum photonic technology, quantum information

中图分类号: 

  • O431.2

图1

光量子芯片上不同自由度编码:(a)频率编码,(b) 时间编码,(c)频率和时间超纠缠,(d)波导模式编码,(e)路径编码"

图2

简并与非简并的二阶和三阶非线性过程的原理图:(a)简并与非简并的四波混频过程,(b)简并与非简并的参量下转换过程"

图3

不同种类的光子对源:(a)纳米线,(b)单波导环型共振腔,(c)双波导环形共振腔,(d)带有MZI结构的双波导环形共振腔"

图4

纠缠产生方式:(a)非简并SFWM量子光源阵列,(b)简并SFWM量子光源阵列,(c)利用路径一致原理产生高维纠缠原理图"

图5

片上基本操控单元:(a)相移器,(b)MZI结构(由两个分束器和一个相移器组成),(c)以MMI作为分束器的显微镜图,(d)MZI结构的显微镜图,(e)作为片上波分复用器件的AMZI显微镜图"

图6

酉矩阵线路示意图:(a)基于SU(2)单元,(b)基于级联相移器和模式耦合器"

表1

片上高维纠缠光量子芯片结构对比"

芯片实现量子态维度光子对源波分复用器件通用操控线路能力

操控部分

相移器数量

输出端口数量
文献[39]3×3带有MZI结构的微环共振腔AMZI任意局域酉操作126
文献[21]4×4纳米线AMZI和MMI任意双光子量子门522
文献[38]15×15纳米线AMZI任意局域酉操作622
1 Ladd T D, Jelezko F, Laflamme R,et al. Quantum computers. Nature,2010,464(7285):45-53.
2 Gisin N, Ribordy G, Tittel W,et al. Quantum cryptography. Reviews of Modern Physics,2002,74(1):145-195.
3 Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nature Photonics,2011,5(4):222-229.
4 Bouland A, Fefferman B, Nirkhe C,et al. On the complexity and verification of quantum random circuit sampling. Nature Physics,2019,15(2):159-163.
5 Arute F, Arya K, Babbush R,et al. Quantum supremacy using a programmable superconducting processor. Nature,2019,574(7779):505-510.
6 Zhong H S, Wang H, Deng Y H,et al. Quantum computational advantage using photons. Science,2020,370(6523):1460-1463.
7 Liao S K, Cai W Q, Liu W Y,et al. Satellite?to?ground quantum key distribution. Nature,2017,549(7670):43-47.
8 Chen Y A, Zhang Q, Chen T Y,et al. An integrated space?to?ground quantum communication network over 4,600 kilometres. Nature,2021,589(7841):214-219.
9 Peters N, Altepeter J, Jeffrey E,et al. Precise creation,characterization,and manipulation of single optical qubits. Quantum Information & Computation,2003,3(7):503-517.
10 Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature,2001,409(6816):46-52.
11 Raussendorf R, Briegel H J. A one?way quantum computer. Physical Review Letters,2001,86(22):5188-5191.
12 Raussendorf R, Browne D E, Briegel H J. Measurement?based quantum computation on cluster states. Physical Review A,2003,68(2):022312.
13 Nielsen M A. Optical quantum computation using cluster states. Physical Review Letters,2004,93(4):040503.
14 Gimeno?Segovia M, Shadbolt P, Browne D E,et al. From three?photon Greenberger?Horne?Zeilinger states to ballistic universal quantum computation. Physical Review Letters,2015,115(2):020502.
15 D'Ambrosio V, Nagali E, Walborn S P,et al. Complete experimental toolbox for alignment?free quantum communication. Nature Communications,2012(3):961.
16 Graham T M, Bernstein H J, Wei T C,et al. Superdense teleportation using hyperentangled photons. Nature Communications,2015(6):7185.
17 Luo Y H, Zhong H S, Erhard M,et al. Quantum teleportation in high dimensions. Physical Review Letters,2019,123(7):070505.
18 Dada A C, Leach J, Buller G S,et al. Experimental high?dimensional two?photon entanglement and violations of generalized Bell inequalities. Nature Physics,2011,7(9):677-680.
19 Pivoluska M, Huber M, Malik M. Layered quantum key distribution. Physical Review A,2018,97(3):032312.
20 Lanyon B P, Barbieri M, Almeida M P,et al. Simplifying quantum logic using higher?dimensional Hilbert spaces. Nature Physics,2009,5(2):134-140.
21 Qiang X G, Zhou X Q, Wang J W,et al. Large?scale silicon quantum photonics implementing arbitrary two?qubit processing. Nature Photonics,2018,12(9):534-539.
22 Neeley M, Ansmann M, Bialczak R C,et al. Emulation of a quantum spin with a superconducting phase qudit. Science,2009,325(5941):722-725.
23 Kues M, Reimer C, Roztocki P,et al. On?chip generation of high?dimensional entangled quantum states and their coherent control. Nature,2017,546(7660):622-626.
24 Imany P, Jaramillo?Villegas J A, Odele O D,et al. 50 GHz?spaced comb of high?dimensional frequency?bin entangled photons from an on?chip silicon nitride microresonator. Optics Express,2018,26(2):1825-1840.
25 Lukens J M, Lougovski P. Frequency?encoded photonic qubits for scalable quantum information processing. Optica,2017,4(1):8-16.
26 Lu H H, Simmerman E M, Lougovski P,et al. Fully arbitrary control of frequency?bin qubits. Physical Review Letters,2020,125(12):120503.
27 Xiong C, Zhang X, Mahendra A,et al. Compact and reconfigurable silicon nitride time?bin entanglement circuit. Optica,2015,2(8):724-727.
28 Zhang X, Bell B A, Mahendra A,et al. Integrated silicon nitride time?bin entanglement circuits. Optics Letters,2018,43(15):3469-3472.
29 Samara F, Martin A, Autebert C,et al. High?rate photon pairs and sequential Time?Bin entanglement with Si3N4 microring resonators. Optics Express,2019,27(14):19309-19318.
30 Reimer C, Sciara S, Roztocki P,et al. High?dimensional one?way quantum processing implemented on d?level cluster states. Nature Physics,2019,15(2):148-153.
31 Lu H H, Hu Z X, Alshaykh M S,et al. Quantum phase estimation with time?frequency qudits in a single photon. Advanced Quantum Technologies,2020,3(2):1900074.
32 Feng L T, Zhang M, Xiong X,et al. On?chip transverse?mode entangled photon pair source. npj Quantum Information,2019,5(1):2.
33 Cui C H, Seshadreesan K P, Guha S,et al. High?dimensional frequency?encoded quantum information processing with passive photonics and time?resolving detection. Physical Review Letters,2020,124(19):190502.
34 Xiang J L, Tao Z Y, Guo X H,et al. Universal programmable on?chip metasurface building blocks for arbitrary high?order mode manipulation. 2020,arXiv:.
35 Li C L, Liu D J, Dai D X. Multimode silicon photonics. Nanophotonics,2018,8(2):227-247.
36 Silverstone J W, Santagati R, Bonneau D,et al. Qubit entanglement between ring?resonator photon?pair sources on a silicon chip. Nature Communications,2015,6(1):7948.
37 Santagati R, Silverstone J W, Strain M J,et al. Silicon photonic processor of two?qubit entangling quantum logic. Journal of Optics,2017,19(11):114006.
38 Wang J W, Paesani S, Ding Y H,et al. Multidimensional quantum entanglement with large?scale integrated optics. Science,2018,360(6386):285-291.
39 Lu L L, Xia L J, Chen Z Y,et al. Three?dimensional entanglement on a silicon chip. npj Quantum Information,2020,6(1):30.
40 Xue G T, Niu Y F, Liu X Y,et al. Ultrabright multiplexed energy?time?entangled photon generation from lithium niobate on insulator chip. Physical Review Applied,2021,15(6):064059.
41 Ma Z H, Chen J Y, Li Z,et al. Ultrabright quantum photon sources on chip. Physical Review Letters,2020,125(26):263602.
42 Zhao J, Ma C X, Rüsing M,et al. High quality entangled photon pair generation in periodically poled thin?film lithium niobate waveguides. Physical Review Letters,2020,124(16):163603.
43 Silverstone J W. Entangled light in silicon waveguides. Ph.D. Dissertation. Bristol,UK:University of Bristol,2015.
44 Matthews J C F, Politi A, Bonneau D,et al. Heralding two?photon and four?photon path entanglement on a chip. Physical Review Letters,2011,107(16):163602.
45 Reimer C, Caspani L, Clerici M,et al. Integrated frequency comb source of heralded single photons. Optics Express,2014,22(6):6535-6546.
46 Ribeiro P H S, Pádua S, Da Silva J C M,et al. Controlling the degree of visibility of Young's fringes with photon coincidence measurements. Physical Review A,1994,49(5):4176-4179.
47 Ralph T C, Langford N K, Bell T B,et al. Linear optical controlled?NOT gate in the coincidence basis. Physical Review A,2002,65(6):062324.
48 Lin Q, Zhang J D, Fauchet P M,et al. Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. Optics Express,2006,14(11):4786-4799.
49 Lin Q, Painter O J, Agrawal G P. Nonlinear optical phenomena in silicon waveguides:Modeling and applications. Optics Express,2007,15(25):16604-16644.
50 Da Ros F, Vukovic D, Gajda A,et al. Phase regeneration of DPSK signals in a silicon waveguide with reverse?biased p?i?n junction. Optics Express,2014,22(5):5029-5036.
51 Rosenfeld L M, Sulway D A, Sinclair G F,et al. Mid?infrared quantum optics in silicon. Optics Express,2020,28(25):37092-37102.
52 Ramelow S, Farsi A, Clemmen S,et al. Silicon?nitride platform for narrowband entangled photon generation. 2015,arXiv:.
53 Silverstone J W, Bonneau D, Ohira K,et al. On?chip quantum interference between silicon photon?pair sources. Nature Photonics,2014,8(2):104-108.
54 Wengerowsky S, Joshi S K, Steinlechner F,et al. An entanglement?based wavelength?multiplexed quantum communication network. Nature,2018,564(7735):225-228.
55 Chen J, Levine Z H, Fan J Y,et al. Frequency?bin entangled comb of photon pairs from a silicon?on?insulator micro?resonator. Optics Express,2011,19(2):1470-1483.
56 Husko C A, Clark A S, Collins M J,et al. Multi?photon absorption limits to heralded single photon sources. Scientific Reports,2013,3(1):3087.
57 Engin E, Bonneau D, Natarajan C M,et al. Photon pair generation in a silicon micro?ring resonator with reverse bias enhancement. Optics Express,2013,21(23):27826-27834.
58 Reimer C, Kues M, Roztocki P,et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science,2016,351(6278):1176-1180.
59 Tison C C, Steidle J A, Fanto M L,et al. Path to increasing the coincidence efficiency of integrated resonant photon sources. Optics Express,2017,25(26):33088-33096.
60 Guo X, Zou C L, Schuck C,et al. Parametric down?conversion photon?pair source on a nanophotonic chip. Light:Science & Applications,2017,6(5):e16249.
61 Lu X Y, Li Q, Westly D A,et al. Chip?integrated visible–telecom entangled photon pair source for quantum communication. Nature Physics,2019,15(4):373-381.
62 Bogaerts W, De Heyn P, Van Vaerenbergh T,et al. Silicon microring resonators. Laser & Photonics Reviews,2012,6(1):47-73.
63 Guo Y, Zhang W, Lv N,et al. The impact of nonlinear losses in the silicon micro?ring cavities on cw pumping correlated photon pair generation. Optics Express,2014,22(3):2620-2631.
64 Guo K, Shi X D, Wang X L,et al. Generation rate scaling:The quality factor optimization of microring resonators for photon?pair sources. Photonics Research,2018,6(6):587-596.
65 Strain M J, Lacava C, Meriggi L,et al. Tunable Q?factor silicon microring resonators for ultra?low power parametric processes. Optics Letters,2015,40(7):1274-1277.
66 Vernon Z, Liscidini M, Sipe J E. No free lunch:The trade?off between heralding rate and efficiency in microresonator?based heralded single photon sources. Optics Letters,2016,41(4):788-791.
67 Liu Y W, Wu C, Gu X W,et al. High?spectral?purity photon generation from a dual?interferometer?coupled silicon microring. Optics Letters,2020,45(1):73-76.
68 Bergamasco N, Menotti M, Sipe J E,et al. Generation of path?encoded Greenberger?Horne?Zeilinger states. Physical Review Applied,2017,8(5):054014.
69 Zhu P Y, Xue S C, Zheng Q L,et al. Reconfigurable multiphoton entangled states based on quantum photonic chips. Optics Express,2020,28(18):26792-26806.
70 Krenn M, Hochrainer A, Lahiri M,et al. Entanglement by path identity. Physical Review Letters,2017,118(8):080401.
71 Feng L T, Zhang M, Liu D,et al. Observation of nonlocal quantum interference between the origins of a four?photon state in a silicon chip. 2021,arXiv:.
72 Kysela J, Erhard M, Hochrainer A,et al. Path identity as a source of high?dimensional entanglement. Proceedings of the National Academy of Sciences of the United States of America,2020,117(42):26118-26122.
73 Hochrainer A, Lahiri M, Erhard M,et al. Quantum Indistinguishability by Path Identity:The awakening of a sleeping beauty. 2021,arXiv:.
74 Gu X M, Chen L J, Zeilinger A,et al. Quantum experiments and graphs. Ⅲ. High?dimensional and multiparticle entanglement. Physical Review A,2019,99(3):032338.
75 Chakraborty U, Carolan J, Clark G,et al. Cryogenic operation of silicon photonic modulators based on the DC Kerr effect. Optica,2020,7(10):1385-1390.
76 Baehr?Jones T, Ding R, Liu Y,et al. Ultralow drive voltage silicon traveling?wave modulator. Optics Express,2012,20(11):12014-12020.
77 Gehl M, Long C, Trotter D,et al. Operation of high?speed silicon photonic micro?disk modulators at cryogenic temperatures. Optica,2017,4(3):374-382.
78 Soldano L B, Pennings E C M. Optical multi?mode interference devices based on self?imaging:Principles and applications. Journal of Lightwave Technology,1995,13(4):615-627.
79 Reck M, Zeilinger A, Bernstein H J,et al. Experimental realization of any discrete unitary operator. Physical Review Letters,1994,73(1):58-61.
80 ?ukowski M, Zeilinger A, Horne M A. Realizable higher?dimensional two?particle entanglements via multiport beam splitters. Physical Review A,1997,55(4):2564-2579.
81 Clements W R, Humphreys P C, Metcalf B J,et al. Optimal design for universal multiport inter?ferometers. Optica,2016,3(12):1460-1465.
82 Schaeff C, Polster R, Huber M,et al. Experimental access to higher?dimensional entangled quantum systems using integrated optics. Optica,2015,2(6):523-529.
83 Tang R, Tanemura T, Nakano Y. Integrated reconfigurable unitary optical mode converter using MMI couplers. IEEE Photonics Technology Letters,2017,29(12):971-974.
84 Cheng J W, Zhou H L, Dong J J. Photonic matrix computing:From fundamentals to applications. Nanomaterials,2021,11(7):1683.
85 Altepeter J B, Jeffrey E R, Kwiat P G. Photonic state tomography. Advances in Atomic,Molecular,and Optical Physics,2005,52:105-159.
86 Carolan J, Harrold C, Sparrow C,et al. Universal linear optics. Science,2015,349(6249):711-716.
87 Harris N C, Ma Y J, Mower J,et al. Efficient,compact and low loss thermo?optic phase shifter in silicon. Optics Express,2014,22(9):10487-10493.
88 Gao S Q, Lin H T, Zhou L D,et al. Power?efficient thermal optical tunable grating coupler based on silicon photonic platform. IEEE Photonics Technology Letters,2019,31(7):537-540.
89 Jacques M, Samani A, El?Fiky E,et al. Optimization of thermo?optic phase?shifter design and mitigation of thermal crosstalk on the SOI platform. Optics Express,2019,27(8):10456-10471.
90 Krenn M, Gu X M, Zeilinger A. Quantum experiments and graphs:Multiparty states as coherent superpositions of perfect matchings. Physical Review Letters,2017,119(24):240403.
91 Valiant L G. The complexity of computing the permanent. Theoretical Computer Science,1979,8(2):189-201.
92 Gu X M, Erhard M, Zeilinger A,et al. Quantum experiments and graphs Ⅱ:Quantum interference,computation,and state generation. Proceedings of the National Academy of Sciences of the United States of America,2019,116(10):4147-4155.
93 Qiang X G, Wang Y Z, Xue S C,et al. Implementing graph?theoretic quantum algorithms on a silicon photonic quantum walk processor. Science Advances,2021,7(9):eabb8375.
94 Liu X, Yao X, Xue R,et al. An entanglement?based quantum network based on symmetric dispersive optics quantum key distribution. APL Photonics,2020,5(7):076104.
95 Joshi S K, Aktas D, Wengerowsky S,et al. A trusted node–free eight?user metropolitan quantum communication network. Science Advances,2020,6(36):eaba0959.
96 Appas F, Baboux F, Amanti M I,et al. Flexible entanglement?distribution network with an AlGaAs chip for secure communications. npj Quantum Information,2021,7(1):118.
97 Da Lio B, Cozzolino D, Biagi N,et al. Path?encoded high?dimensional quantum communication over a 2 km multicore fiber. npj Quantum Information,2021,7(1):63.
98 Doda M, Huber M, Murta G,et al. Quantum key distribution overcoming extreme noise:Simultaneous subspace coding using high?dimensional entanglement. Physical Review Applied,2021,15(3):034003.
99 Pirandola S, Bardhan B R, Gehring T,et al. Advances in photonic quantum sensing. Nature Photonics,2018,12(12):724-733.
100 Lloyd S. Enhanced sensitivity of photodetection via quantum illumination. Science,2008,321(5895):1463-1465.
101 Gregory T, Moreau P A, Toninelli E,et al. Imaging through noise with quantum illumination. Science Advances,2020,6(6):eaay2652.
102 Vigliar C, Paesani S, Ding Y H,et al. Error protected qubits in a silicon photonic chip. 2020,arXiv:.
103 Feng L T, Zhang M, Zhou Z Y,et al. On?chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nature Communications,2016,7(1):11985.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!