南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (5): 737–743.doi: 10.13232/j.cnki.jnju.2020.05.013

• • 上一篇    

全介质硅基微腔结构的模拟与实验研究

王朝晔,侯国智,李伟,徐骏(),陈坤基   

  1. 固体微结构物理国家重点实验室,南京大学电子科学与工程学院,南京,210093
  • 收稿日期:2020-03-15 出版日期:2020-09-30 发布日期:2020-09-29
  • 通讯作者: 徐骏 E-mail:junxu@nju.edu.cn
  • 基金资助:
    国家自然科学基金(61735008)

Simulation and experimental study of all⁃dielectric silicon⁃based microcavity structure

Zhaoye Wang,Guozhi Hou,Wei Li,Jun Xu(),Kunji Chen   

  1. National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
  • Received:2020-03-15 Online:2020-09-30 Published:2020-09-29
  • Contact: Jun Xu E-mail:junxu@nju.edu.cn

摘要:

硅基微腔结构在许多光学与光电子器件领域都有重要的应用.针对微腔结构在热光伏系统中的可能应用,结合理论与实验进行了研究.通过利用等离子体增强化学气相沉积技术制备了非晶氮化硅与氮氧化硅薄膜,获得相应的光学常数,然后利用软件模拟研究不同结构的微腔的光学特性,进而制备一维光子微腔结构,在中心波长为1.1 μm和2.0 μm处分别获得81%和56%的选择性透射率;同时,对薄膜吸收对微腔特性的影响进行了分析.

关键词: SiNx/SiNyOz多层膜, F?P腔滤波器, 光学微腔, 时域有限差分法

Abstract:

Silicon?based microcavity structures have important applications in many fields of optics and optoelectronic devices. This work focuses on the possible applications of microcavity structures in thermal photovoltaic systems, combining theoretical and experimental research. We prepared amorphous silicon nitride and silicon oxynitride thin films by using plasma enhanced chemical vapor deposition technology to obtain corresponding optical constants. Then, the optical characteristics of microcavities with different structures were studied by software simulation, and one?dimensional photon microcavity structures were prepared. As a result, selective transmittances of 81% and 56% were obtained at the central wavelengths of 1.1 μm and 2.0 μm, respectively. At the same time, the influence of film absorption on microcavity characteristics was analyzed.

Key words: SiNx/SiNyOz multilayer film, F?P cavity filter, optical microcavity, FDTD

中图分类号: 

  • TN36

图1

(a) a?SiNx的折射率和Si/N原子比随NH3/SiH4的变化曲线;(b) a?SiNyOz的折射率和Si/O原子比随N2O/SiH4的变化曲线"

图2

三种微腔的剖面结构示意图"

图3

(a)分别具有2,2.5,3个反射周期的微腔的模拟透射谱;(b)分别具有3.5,4个反射周期的微腔的模拟透射谱;(c)中心波长分别为1.1,1.5和2.0 μm的结构C微腔的模拟透射谱;(d)中心波长为1.1 μm的结构C微腔在短波段的模拟透射谱"

图4

中心波长为1.1 μm的微腔的剖面SEM照片(a),模拟和实验得到的透射谱(b),中心波长为2.0 μm的微腔的模拟和实验得到的透射谱(c)"

图5

(a)假设氮氧化硅材料消光系数(kL)为0时,改变氮化硅的消光系数(kH)为2×10-2,10-2和10-3,得到的模拟透射谱;(b)假设氮化硅材料消光系数(kH)为0时,改变氮氧化硅的消光系数(kL)为2×10-2,10-2和10-3,得到的模拟透射谱(b) when kH is 0, the simulated transmission spectrum with different kL of 2×10-2, 10-2?and 10-3"

1 Zhou B,Jiang H H,Wang R Z,et al. Optical fiber fiber fabry–perot filter with tunable cavity for high–precision resonance wavelength adjustment. Journal of Lightwave Technology,2015,33(14):2950-2954.
2 马光辉,张家斌,张贺等. 金属等离子激元调控Fabry–Perot微腔谐振模式研究. 中国光学,2019,12(3):649-662.
Ma G H,Zhang J B,Zhang H,et al. Resonant mode of Fabry–Perot microcavity regulated by metal surface plasmons. Chinese Optics,2019,12(3):649-662.
3 Jiang M M,Zhao B,Chen H Y,et al. Plasmon–enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires. Nanoscale,2014,6(3):1354-1361.
4 Wang H H,Huang Y Q,Gu H M,et al. Analysis and numerical simulation of a novel optical microcavity with the roof structure. Japanese Journal of Applied Physics,2019,58(1):012010.
5 Wang H,Chang J Y,Yang Y,et al. Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters. International Journal of Heat and Mass Transfer,2016,98:788-798.
6 Wang Y,Liu H Z,Zhu J. Solar thermophotovoltaics:progress,challenges and opportunities. APL Materials,2019,7(8):080906.
7 Shimizu M,Kohiyama A,Yugami H. 10% efficiency solar thermophotovoltaic systems using spectrally controlled monolithic planar absorber/emitters∥Proceeding of SPIE 9140,Photonics for Solar Energy Systems V. Bellingham,WA,USA:SPIE,2014:91400P.
8 Bierman D M,Lenert A,Chan W R,et al. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nature Energy,2016,1(6):16068.
9 Wang Y,Zhou L,Zheng Q H,et al. Spectrally selective solar absorber with sharp and temperature dependent cut–off based on semiconductor nanowire arrays. Applied Physics Letters,2017,110(20):201108.
10 Crisostomo F,Taylor R A,Zhang T,et al. Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector. Renewable Energy,2014,72:79-87.
11 Zhu H Z,Luo H,Li Q,et al. Tunable narrowband mid?infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon. Optics Letters,2018,43(21):5230-5233.
12 Yang Z M,Zhou Y M,Chen Y Q,et al. Reflective color filters and monolithic color printing based on asymmetric fabry–perot cavities using nickel as a broadband absorber. Advanced Optical Materials,2016,4(8):1196-1202.
13 Wang Y S,Zhu X P,Chen Y Q,et al. Fabrication of FP–cavity?based monolithic full–color filter arrays using a template–confined micro–reflow process. Journal of Micromechanics and Microengineering,2018,29(2):025008.
14 Yang Z M,Chen Y Q,Zhou Y M,et al. Microscopic interference full–color printing using grayscale–patterned fabry–perot resonance cavities. Advanced Optical Materials,2017,5(10):1700029.
15 Mao L,Ye H. New development of one–dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications. Renewable Energy,2010,35(1):249-256.
16 Khosroshahi F K,Ertürk H,Mengü? M P. Optimization of spectrally selective Si/SiO2 based filters for thermophotovoltaic devices. Journal of Quantitative Spectroscopy and Radiative Transfer,2017,197:123-131.
17 Horie Y,Arbabi A,Arbabi E,et al. Wide bandwidth and high resolution planar filter array based on DBR–metasurface–DBR structures. Optics Express,2016,24(11):11677-11682.
18 Qi D,Wang X,Cheng Y Z,et al. Quasi–periodic photonic crystal Fabry–Perot optical filter based on Si/SiO2 for visible–laser spectral selectivity. Journal of Physics D:Applied Physics,2018,51(22):225103.
19 Medvedev A V,Feoktistov N A,Grudinkin S A,et al. Planar light–emitting microcavities based on hydrogenated amorphous silicon carbide. Semiconductors,2014,48(10):1374-1380.
20 Chen D Y,Xu J,Qian B,et al. Luminescence behavior from amorphous silicon–carbide film–based optical microcavities. Materials Chemistry and Physics,2008,111(2-3):279-282.
21 Luke K,Okawachi Y,Lamont M R E,et al. Broadband mid?infrared frequency comb generation in a Si3N4 microresonator. Optics Letters,2015,40(21):4823-4826.
22 但亚平,岳瑞峰,王燕等. 氮氧化硅薄膜的光学特性及其在光波导中的应用∥第一届全国纳米技术与应用学术会议论文集. 厦门:中国电子学会,2000:98-101.
Dan Y P,Yue R F,Wang Y,et al. Optical properties of silicon oxynitride films and their applications in optical waveguides∥Proceedings of the First National Conference on Nanotechnology and Applications. Xiamen,China:China Electronics Society,2000:98-101.
[1] 丰 雪1,2,钱 波2*,曹 萌1 . 新型光学微腔中CdSe@ZnS胶体量子点溶液光致荧光特性研究[J]. 南京大学学报(自然科学版), 2016, 52(5): 825-.
[2] 孙秀娜,张小凤,常国栋,汪艳. 粒子间耦合振动对液体中刚性球形粒子的声辐射力影响[J]. 南京大学学报(自然科学版), 2015, 51(6): 1160-1165.
[3]  赵帅**
.  太赫兹高斯脉冲球体雷达散射截面研究*[J]. 南京大学学报(自然科学版), 2013, 49(1): 95-100.
[4]  曹明,于小利,罗中涌,公勋,章德
.  利用时域差分法对薄膜体声波谐振进行二维分析[J]. 南京大学学报(自然科学版), 2013, 49(1): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!