南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (3): 405–417.doi: 10.13232/j.cnki.jnju.2020.03.009

• • 上一篇    下一篇

断陷盆地边界断裂结构特征及物性差异定量评价——以车镇凹陷埕南断裂为例

杜彦男1,2,吴孔友1(),刘寅1,林红梅3,党思思4,李彦颖1,徐进军1   

  1. 1.中国石油大学(华东)地球科学与技术学院,青岛,266580
    2.中石化胜利石油工程有限公司钻井工艺研究院,东营,257000
    3.中国石化胜利油田分公司勘探开发研究院,东营,257015
    4.中国石油新疆油田分公司陆梁油田作业区,克拉玛依,834000
  • 收稿日期:2020-03-03 出版日期:2020-05-30 发布日期:2020-06-03
  • 通讯作者: 吴孔友 E-mail:wukongyou@163.com
  • 基金资助:
    国家科技重大专项(2017ZX05001003);中国科学院先导科技A类专项(XDA14010301);山东省自然科学基金(ZR2017BD036)

The development of fault zone architecture of deep buried boundary faults in the rift basin: A case from the Chengnan Fault of the Chezhen depression

Yannan Du1,2,Kongyou Wu1(),Yin Liu1,Hongmei Lin3,Sisi Dang4,Yanying Li1,Jinjun Xu1   

  1. 1.School of Geoscience,China University of Petroleum, Qingdao,266580,China
    2.Drilling Technology Research Institute of Shengli Petroleum Engineering Corporation Limited, SINOPEC (SLDTI) Dongying,257000,China
    3.Research lnstitute of Petroleum Exploration and Development,Shengli Oilfield;Company Ltd.,SINOPEC,Dongying,257015,China
    4.Luliang Oil Field Operation Area,Xinjiang Oilfield Branch,Petro China,Karamay,834000,China
  • Received:2020-03-03 Online:2020-05-30 Published:2020-06-03
  • Contact: Kongyou Wu E-mail:wukongyou@163.com

摘要:

利用地震、测井、岩心以及物性测试数据等资料,从断裂规模和断层生长连接分段性特征入手,分析了埕南断裂构造发育特征及分段性,精细划分了埕南断裂不同段的断裂带结构及差异性,对比了不同断裂带结构单元物性差异性.研究认为:(1)埕南断裂在车西洼陷内具有明显的分段性构造发育特征,可划分为北西向、北西西向、北东向和北东东向四个走向段,其中北西向和北西西向段断裂呈板式,所控洼陷内断裂发育稀疏,北东向和北东东向段断裂呈铲式或坡坪式,所控洼陷内断裂发育密集,构造样式丰富;(2)埕南断裂内部结构发育较为完整,断裂带结构在深浅测向、井径、密度、声波时差和补偿中子测井曲线上具有良好的可识别性;(3)断裂的生长连接过程与断裂带各结构单元厚度变化具有一定的相关性,在落差较大的走向分段上,断裂带各结构单元发育厚度更大,而在各走向段连接点处,断裂带各结构单元厚度较小;(4)各结构单元物性差异明显,诱导裂缝带孔渗性高于围岩,诱导裂缝带孔渗性高于滑动破碎带1~2个数量级.综合研究表明,断裂带结构的发育对流体输导起到重要的控制作用.

关键词: 断裂分段, 断裂带结构, 断裂带物性特征, 车西洼陷

Abstract:

Based on the data of seismic,well logging,drill core and physical property,we analyzed the structural characteristics,internal architecture and physical properties of different structural components of each segments of the Chengnan Fault. The results show that: (1) the Chengnan Fault can be dividied into four segments based on the strike of the fault,including the NW,NWW,NE and NEE segments. Among these segments,the fault planes of the NW and NWW segments shows planner shape with less faults developed inner corresponding areas,however,the fault planes of the NE and NE segments show as listric shape in the profile with the faults highly developed in the corresponding area of the Chexi Depression; (2) the internal architecture of the Chengnan Fault is highly developed,different types of well logs are used to identify the different internal components of the Chengnan Fault,including the deep and shallow laterologs,well diameter,density,acoustic log and compensated neutron logging curves; (3) the thickness of each structural components of the fault zone is controlled by the fault growth and linkage processes,and in the segment with large drop,the thickness of each structural unit of the fault zone is larger,while in the joint point of each strike segment,the thickness of each structural unit of the fault zone is smaller; (4) the physical properties of each components of the fault zone are quite different,the porosity and permeability of the damage zone is higher than that of protolith rocks,and it also has 1~2 orders of magnitude higher than that of the fault core. Our studies reflect that the internal architecutre of the fault zone can affect the migration of the fluids.

Key words: fault segmentation, fault zone architecture, physical characteristics, the Chexi depression

中图分类号: 

  • P548,TE121

图1

车西洼陷构造位置图(a)、断裂体系图(b)及盆地结构剖面图(c)"

图2

埕南断裂断裂距离?古落差剖面图"

图3

车西洼陷埕南断裂不同段地震剖面图"

图4

埕南断裂各结构单元岩心特征"

图5

Cheg202井断裂带结构测井识别图"

图6

沿埕南断裂自西向东断裂带各结构单元厚度统计图"

表1

埕南断裂不同结构单元物性数据表"

序号层位样品编号深度(m)岩性孔隙度(%)渗透率(mD)断裂带结构断裂分段
1八陡组17che57?64302.0白云质石灰岩1.732.69滑动破碎带北西西向段
2八陡组17che57?44308.2石灰岩3.491.72北西西向段
3八陡组17che57?54304.1石灰岩5.761.99北西西向段
4风山组17che571?43945.4泥质白云岩6.160.05北西西向段
5风山组17che571?13945.6泥质白云岩4.920.90北西西向段
6风山组17che571?33945.8泥质白云岩4.580.05北西西向段
7下马家沟组17cheg202?44043.3石膏质白云岩2.044.46北东东向段
8前震旦系17cheg202?24743.5片麻岩1.805.13北东东向段
9八陡组17che57?14308.7石灰岩1.7913.50诱导裂缝带北西西向段
10八陡组17che57?24309.5石灰岩1.4517.33北西西向段
11八陡组17che57?34311.7泥灰岩2.526.87北西西向段
12风山组17che571?23934.8角砾状白云岩2.623.50北西西向段
13风山组17che571?53944.8泥质白云岩3.509.56北西西向段
14风山组17che59?12620.2灰质白云岩5.6018.29北东向段
15上马家沟组17cheg201?13406.5白云岩2.1842.60北东东向段
16上马家沟组17cheg202?53805.8石灰岩2.547.51北东东向段
17馒头组17cheg202?14565.2泥质白云岩0.439.90北东东向段
18风山组17cheg202?34189.4白云岩3.7622.30北东东向段

图7

埕南断裂内部结构发育及物性特征模式图"

1 罗群,庞雄奇. 海南福山凹陷顺向和反向断裂控藏机理及油气聚集模式. 石油学报,2008,29(3):363-367.
Luo Q,Pang X Q. Reservoir controlling mechanism and petroleum accumulation model for consequent fault and antithetic fault in Fushan depression of Hainan area. Acta Petrolei Sinica,2008,29(3):363-367.
2 罗胜元,何生,王浩. 断层内部结构及其对封闭性的影响. 地球科学进展,2012,27(2):154-164.
Luo S Y,He S,Wang H. Review on fault internal structure and the influence on fault sealing ability. Advances in Earth Science,2012,27(2):154-164.
3 付晓飞,许鹏,魏长柱等. 张性断裂带内部结构特征及油气运移和保存研究. 地学前缘,2012,19(6):200-212.
Fu X F,Xu P,Wei C Z,et al. internal structure of normal fault zone and hydrocarbon migration and conservation. Earth Science Frontiers,2012,19(6):200-212.
4 付晓飞,方德庆,吕延防等. 从断裂带内部结构出发评价断层垂向封闭性的方法. 地球科学?中国地质大学学报,2005,30(3):328-336.
Fu X F,Fang D Q,Lu Y F,et al. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones. Earth Science?Journal of China University of Geosciences,2005,30(3):328-336.
5 刘江. 碎屑岩地层中断层封闭性定量表征及断圈风险性评价——以渤中34-2/4区块为例. 硕士学位论文. 秦皇岛:东北石油大学,2016. (Liu J. Quantitative fault seal characterization and risk assessment of fault trap of clastic rock:an example from Bozhong34?2/4 field.Thesis. Qinhuangdao:Northeast Petroleum University,2016.)
6 张丽辰,吴孔友,何文军等. 准噶尔盆地北三台凸起断裂结构特征及成岩封闭作用. 地质力学学报,2018,24(5):607-616.
Zhang L C,Wu K Y,He W J,et al. Structural characteristics and diagenetic sealing of faults in the Beisantai Swell,Junggar Basin. Journal of Geomechanics,2018,24(5):607-616.
7 吴孔友,赵仲祥,崔世凌等. 夏口断层对惠民南部地区油气成藏的控制作用. 地质力学学报,2012,18(1):32-41.
Wu K Y,Zhao Z X,Cui S L,et al. Controlling of Xiakou fault on hydrocarbon accumulation in the southern part of Huimin depression. Journal of Geomechanics,2012,18(1):32-41.
8 吴孔友,查明. 柴达木盆地北部块断带断层控烃作用. 石油学报,2007,28(3):17-22.
Wu K Y,Zha M. Hydrocarbon controlling function of fault in the North Block?faulted Belt of Qaidam Basin. Acta Petrolei Sinica,2007,28(3):17-22.
9 李颜辰,孟令东,刘露等. 黑山窑村剖面碎屑岩地层断裂带内部结构特征. 科学技术与工程,2016,16(21):172-176.
Li Y C,Meng L D,Liu L,et al. Internal structure characteristic of fault zone in clastic formations at heishanyao cut plane. Science Technology and Engineering,2016,16(21):172-176.
10 Molli G,Cortecci G,Vaselli L,et al. Fault zone structure and fluid–rock interaction of a high angle normal fault in Carrara marble (NW Tuscany,Italy). Journal of Structural Geology,2010,32(9):1334-1348.
11 吕延防,陈章明,陈发景. 非线性映射分析判断断层封闭性. 石油学报,1995,16(2):36-41.
Lv Y F,Chen Z M,Chen F J. Evaluation of sealing ability of faults using nonlinear mapping analysis. Acta Petrolei Sinica,1995,16(2):36-41.
12 王东晔,查明,杨勇. 运用模糊综合评判方法定量研究断层封闭性. 断块油气田,2006,13(4):5-7.
Wang D Y,Zha M,Yang Y. Quantitative study of fault sealing with synthetic fuzzy judgment. Fault?Block Oil and Gas Field,2006,13(4):5-7.
13 沈传波,梅廉夫,刘立林等. 基于三维古构造应力场数值模拟的断层封闭性研究. 石油实验地质,2004,26(1):103-107.
Shen C B,Mei L F Liu L L,et al. Study of fault sealing by the 3?D paleo?tectonic numerical simulation. Petroleum Geology and Experiment,2004,26(1):103-107.
14 Permanyer A,Martín?Martin J D,Kihle J,et al. Oil shows geochemistry and fluid inclusion thermometry of Mid Cretaceous carbonates from the eastern Basque Cantabrian Basin (N Spain). Marine and Petroleum Geology,2018,92:255-269.
15 王珂,戴俊生. 地应力与断层封闭性之间的定量关系. 石油学报,2012,33(1):74-81.
Wang K,Dai J S. A quantitative relationship between the crustal stress and fault sealing ability. Acta Petrolei Sinica,2012,33(1):74-81.
16 王孝彦,高强,孟令东等. 低?非孔隙岩石中走滑断裂带内部结构的形成演化. 断块油气田,2015,22(6):681-685.
Wang X Y,Gao Q,Meng L D,et al. Formation and evolution of internal structure of strike?slip fault zones in low?non porosity rocks. Fault?Block Oil and Gas Field,2015,22(6):681-685.
17 吴孔友,王绪龙,崔殿. 南白碱滩断裂带结构特征及流体作用. 煤田地质与勘探,2012,40(4):5-11.
Wu K Y,Wang X L,Cui D. Structural characteristics and fluid effects of Nanbaijiantan fault zone. Coal Geology & Exploration,2012,40(4):5-11.
18 付晓飞,肖建华,孟令东. 断裂在纯净砂岩中的变形机制及断裂带内部结构. 吉林大学学报地球科学版,2014,44(1):25-37.
Fu X F,Xiao J H,Meng L D. Fault deformation mechanisms and internal structure characteristics of fault zone in pure sandstone. Journal of Jilin University (Earth Science Edition),2014,44(1):25-37.
19 刘伟,朱留方,许东晖等. 断裂带结构单元特征及其测井识别方法研究. 测井技术,2013,37(5):495-498.
Liu W,Zhu L F,Xu D H,et al. On features and logging recognition method of structure unit in fracture belt. Well Logging Technology,2013,37(5):495-498.
20 雷光伟,杨春和,王贵宾等. 北山预选区新场地段岩体节理几何特征及评价. 岩石力学与工程学报,2016,35(5):896-905.
Lei G W,Yang C H,Wang G B,et al. Geometric features of joints and quality evaluation of rock mass in Xinchang section,Beishan. Chinese Journal of Rock Mechanics and Engineering,2016,35(5):896-905.
21 王如良,宋传春,冯光铭. 车镇凹陷车西洼陷油气富集规律. 油气地质与采收率,2001,8(4):28-31.
Wang R L,Song C C,Feng G M. Research on oil?gas enrichment rules in Chexi Subsag of Chezhen sag. Petroleum Geology and Recovery Efficiency,2001,8(4):28-31.
22 张家震,毕彩芹,王新峰等. 车镇凹陷石油地质特征及勘探远景. 海洋石油,2005,25(4):6-10.
Zhang J Z,Bi C Q,Wang X F,et al. Petroleum and oil geology and exploratory prospect of Chezhen Sag. Offshore Oil,2005,25(4):6-10.
23 王来斌,徐怀民,张本琪. 车镇凹陷鼻状构造与油气富集的关系. 西安石油学院学报(自然科学版),2003,18(6):1-4.
Wang L B,Xu H M,Zhang B Q. Relationship between nose structures and oil?gas enrichment in Chezhen Sag. Journal of Xi’an Petroleum Institute (Natural Science Edition),2003,18(6):1-4.
24 王艳. 沾化、车镇凹陷盆地结构特征分析. 硕士学位论文. 青岛:中国石油大学,2011.
Wang Y. Basin strcuture characteristics analysis of Zhanhua Sag and Chezhen Sag. Master Dissertation. Qingdao:China University of Petroleum (East China),2011.
25 王永诗,鲜本忠. 车镇凹陷北部陡坡带断裂结构及其对沉积和成藏的控制. 油气地质与采收率,2006,13(6):5-8.
Wang Y S,Xian B Z. Fault structures of northern steep slope belts and their influences on sedimentation and reservoir formation in Chezhen Sag. Petroleum Geology and Recovery Efficiency,2006,13(6):5-8.
26 梁书义. 车西地区古潜山储层特征与形成机制. 博士学位论文. 青岛:中国石油大学,2007.
Liang S Y. Geoburried?hills Reservoir characteristics and forming?mechanism In Chexi Area. Ph.D. Dissertation. Qingdao:China University of Petroleum (East China),2007.
27 渠效文. 济阳拗陷车西洼陷北部潜山油气藏特征. 山东地质,2003,19(S1):81-84,89.
Qu X W. Oil and gas deposit characteristics of buried hill in North part of Chexi depression in Jiyang depression. Geology of Shandong,2003,19(S1):81-84,89.
28 万涛,蒋有录,林会喜等. 车西洼陷南坡油气成藏和富集的主控因素. 中国石油大学学报(自然科学版),2010,34(6):38-44.
Wan T,Jiang Y L,Lin H X,et al. Main controlling factors of hydrocarbon accumulation and enrichment in the southern slope of Chexi Sag. Journal of China University of Petroleum (Edition of Natural Science),2010,34(6):38-44.
29 张永辉,夏斌,万念明等. 车西洼陷构造演化对油气成藏的控制作用. 大地构造与成矿学,2010,34(4):593-598.
Zhang Y H,Xia B,Wan N M,et al. Tectonic controls on the hydrocarbon accumulations in the Chexi Sag. Geotectonica et Metallogenia,2010,34(4):593-598.
30 李家贵,宋传春,袁吉鲁等. 济阳坳陷车镇凹陷低位隐伏潜山油气藏研究. 中国石油勘探,2002,7(2):31-35.
Li J Q,Song C C,Yuan J L,et al. Research on low?position concealed buried hill oil and gas reservoirs at Chezhen Sag of Jiyang depression. China Petroleum Exploration,2002,7(2):31-35.
31 李茹,梁书义,周瑶琪等. 济阳坳陷车西地区下古生界储层裂缝参数特征与裂缝类型. 大地构造与成矿学,2006,30(4):463-469.
Li R,Liang S Y,Zhou Y Q,et al. Types and parameters for fissures in the lower paleozoic reservior in the Chexi region of Jiyang depression. Geotectonica et Metallogenia,2006,30(4):463-469.
32 薛海涛,卢双舫,张学军等. 济阳坳陷下古生界碳酸盐岩烃源岩评价. 地球化学,2006,35(6):609-614.
Xue H T,Lu S F,Zhang X J,et al. Evaluation of lower paleozoic carbonate source rocks in Jiyang depression. Geochimica,2006,35(6):609-614.
33 Cartwright J A,Trudgill B D,Mansfield C S. Fault growth by segment linkage:an explanation for scatter in maximum displacement and trace length data from the canyonlands grabens of SE Utah. Journal of Structural Geology,1995,17(9):1319-1326.
34 Su J B,Zhu W B,Wei J,et al. Fault growth and linkage:Implications for tectonosedimentary evolution in the Chezhen Basin of Bohai Bay,eastern China. AAPG Bulletin,2011,95(1):1-26.
35 Kim Y S,Sanderson D J. The relationship between displacement and length of faults:a review. Earth?Science Reviews,2005,68(3-4):317-334.
36 Peacock D C P,Sanderson D J. Displacements,segment linkage and relay ramps in normal fault zones. Journal of Structural Geology,1991,13(6):721-733.
37 Morley C K,Gabdi S,Seusutthiya K. Fault superimposition and linkage resulting from stress changes during rifting:examples from 3D Seismic data,Phitsanulok Basin,Thailand. Journal of Structural Geology,2007,29(4):646-663.
38 Liu Y,Chen Q H,Wang X,et al. Influence of normal fault growth and linkage on the evolution of a rift basin:A case from the Gaoyou depression of the Subei Basin,eastern China. AAPG Bulletin,2017,101(2):265-288.
39 吴智平,李伟,郑德顺等. 沾化凹陷中、新生代断裂发育及其形成机制分析. 高校地质学报,2004,10(3):405-417.
Wu Z P,Li W,Zheng D S,et al. Analysis on features and origins of the mesozoic and cenozoic faults in Zhanhua Sag. Geological Journal of China Universities,2004,10(3):405-417
40 武玉宏,王慧,高红艳. 对三孔隙度交会图法进行测井曲线标准化的改进. 油气地质与采收率,2005,12(2):38-41.
Wu Y H,Wang H,Gao H Y. Normalization improvement on log curve by three?porosity crossplot approach. Petroleum Geology and Recovery Efficiency,2005,12(2):38-41.
41 Bo S,Wu D,Wang Z H. A new method for permeability estimation from conventional well logs in glutenite reservoirs. Journal of Geophysics and Engineering,2017,14(5):1268-1274.
42 沈卫兵,庞雄奇,张宝收等. 塔中地区碳酸盐岩与碎屑岩储层物性差异及主控因素. 高校地质学报,2015,21(1):138-146.
Shen W B,Pang X Q,Zhang B S,et al. Physical properties differences and key controlling factors of the clasolite reservoirs and carbonate reservoirs in Tazhong Area. Geological Journal of China Universities,2015,21(1):138-146.
43 楼海,王椿镛,姚志祥等. 龙门山断裂带深部构造和物性分布的分段特征. 地学前缘,2010,17(5):128-141.
Lou H,Wang C Y,Yao Z X,et al. Subsection feature of the deep structure and material properties of Longmenshan fault zone. Earth Science Frontiers,2010,17(5):128-141.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 缪长健, 施斌, 郑兴, 王湛, 魏广庆. 海上超长PHC管桩BOFDA内力测试[J]. 南京大学学报(自然科学版), 2018, 54(6): 1057 -1063 .
[2] 陈海娟,冯 翔,虞慧群. 基于预测算子的GSO特征选择算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1206 -1215 .
[3] 谢 欢, 朱 荀, 卢 俊, 沈庆宏, 胡安东. 基于机器视觉的LED大屏亮度一致性检测与矫正[J]. 南京大学学报(自然科学版), 2019, 55(2): 170 -179 .
[4] 狄 岚, 何锐波, 梁久祯. 基于可能性聚类和卷积神经网络的道路交通标识识别算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 238 -250 .
[5] 董越男,吴兵党. 铁离子对紫外/乙酰丙酮法降解甲基橙的影响[J]. 南京大学学报(自然科学版), 2019, 55(3): 504 -510 .
[6] 王旻,林志斌,卢晶. 适用于虚拟低音音质的客观评价方法研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 796 -803 .
[7] 顾思云,何其慧,王溢华,田万成,刘志勇,胡柏星. 工业废水与半焦配煤制浆研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 859 -868 .
[8] 徐扬,周文瑄,阮慧彬,孙雨,洪宇. 基于层次化表示的隐式篇章关系识别[J]. 南京大学学报(自然科学版), 2019, 55(6): 1000 -1009 .
[9] 刘作国,陈笑蓉. 汉语句法分析中的论元关系模型研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 1010 -1019 .
[10] 柴变芳,魏春丽,曹欣雨,王建岭. 面向网络结构发现的批量主动学习算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 1020 -1029 .