南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (3): 308–321.doi: 10.13232/j.cnki.jnju.2020.03.002

• • 上一篇    下一篇

微生物碳酸盐岩同生⁃早成岩阶段有机质降解示踪:以四川盆地灯影组四段为例

游杰1,2,胡广1,2(),张玺华3,沈安江4,5,彭瀚霖3,田兴旺3,赵东方1,2   

  1. 1.油气藏地质及开发工程国家重点实验室,西南石油大学,成都,610500
    2.中国石油天然气集团有限公司碳酸盐岩储层重点实验室,西南石油大学研究分室,成都,610500
    3.中国石油西南油气田公司勘探开发研究院,成都,610051
    4.中国石油杭州地质研究院,杭州,310023
    5.中国石油天然气集团公司碳酸盐岩储集层重点实验室,杭州,310023
  • 收稿日期:2020-03-03 出版日期:2020-05-30 发布日期:2020-06-03
  • 通讯作者: 胡广 E-mail:guanghu1198119@163.com
  • 基金资助:
    国家自然科学基金(41872155)

Geochemical tracing of organic matter degradation in microbial carbonates during syngenetic⁃early diagenesis: A case study from the Member IV of Dengying Formation,Sichuan Basin

Jie You1,2,Guang Hu1,2(),Xihua Zhang3,Anjiang Shen4,5,Hanlin Peng3,Xingwang Tian3,Dongfang Zhao1,2   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu,610500,China
    2.Research Division of Key Laboratory of Carbonate Reservoir,CNPC,Southwest Petroleum University,Chengdu,610500,China
    3.Research Institute of Petroleum Exploration and Development,Southwest Oil and Gasfield Company,PetroChina,Chengdu,610051,China
    4.Petrochina Hangzhou Research Institute of Geology,Hangzhou,310023,China
    5.Key Laboratory of Carbonate Reservoirs,CNPC,Hangzhou,310023,China
  • Received:2020-03-03 Online:2020-05-30 Published:2020-06-03
  • Contact: Guang Hu E-mail:guanghu1198119@163.com

摘要:

微生物碳酸盐岩中有机质在同生?早成岩阶段的降解既可以产生酸性流体对碳酸盐颗粒进行溶解,扩大后期成储流体通道,有利于储层发育;但也可能导致孔隙水处在碱性环境下,形成碳酸盐矿物胶结,阻碍溶蚀流体对储层的改造.因此,同生?早成岩期有机质降解对微生物岩储层储集空间的形成有重要影响,但研究薄弱.以四川盆地北部地区上震旦统灯影组四段(灯四段)微生物碳酸盐岩为例,综合岩石学和原位微区地球化学分析(LA?ICP?MS),开展了这一降解过程的地球化学示踪研究.结果显示,当微生物碳酸盐岩中的有机质处于有氧降解时,微亮晶和亮晶组构均具有Ce负异常;当亮晶组构Ce元素转变为正异常时,表明有机质进入厌氧降解阶段.此外,微生物岩亮晶组构中Cr含量高于微亮晶组构,可以作为有机质降解经过了硝酸盐还原过程的识别标志.如果有机质被Fe?Mn氧化物氧化降解,则会造成微生物岩微亮晶组构中Fe含量高于亮晶组构.随着成岩环境的还原状态进一步加强,有机质降解进入硫酸盐还原阶段,将导致微生物岩中亮晶组构相对于微亮晶组构富集Cu,Mo元素.因此,Ce,Cr,Fe,Mo,Cu等元素在微生物岩不同岩石组构中的变化可以有效识别微生物岩同生?早成岩阶段有机质降解的成岩环境并示踪有机质降解过程.

关键词: 有机质降解, 地化特征, 微生物碳酸盐岩, 灯四段, 川北地区

Abstract:

The degradation of organic matter in microbial carbonates during early diagenesis not only can produce acidic fluids to dissolve carbonate grains,which may amplify the channels for later dissolution and be beneficial to the development of reservoirs,but also can result in alkaline pore water that precipitates carbonate cements which may hinder the development of reservoir. Therefore,the degradation of organic matter during syngenetic?early diagenesis stage has important impacts on the development of reservoir in microbial carbonates. However,the characteristics and recognization about degradation of organic matter in microbial carbonates have not yet been studied. In this study,we conducted petrological analyses and in situ geochemical for microbial carbonates from the Member IV of Dengying Formation,Northern Sichuan Basin to characterize organic matter degradation in microbial carbonates. Results show that when the organic matter in the microbial carbonates is degraded by aerobic respiration,both the microspar and sparite components have negative Ce anomalies,whereas the positive Ce anomaly of sparite component indicates that the degradation of organic matter is under an anaerobic environment. If organic matters in microbial carbonate are oxygenated by nitrate reduction,the Cr concentration of microspar component is lower than that in sparite component. If the organic matter is degraded by Fe?Mn oxides reduction,the Fe concentration in microspar component is higher than that of sparite component. With the reduction state of diagenetic environment further strengthening,the organic matter may be further degraded by sulfate reduction,which leads to the higher Cu and Mo concentrations in the sparite component compared with the microspar component in microbial carbonates. As a consequence,the variation of elements Ce,Cr,Fe,Mo,Cu in components of microbial carbonates could reflect the diagenetic environment,and also can trace the process of the organic matter degradation effectively.

Key words: organic matter degradation, geochemical characteristics, microbial carbonates, Member IV of Dengying Formation, Northern Sichuan Basin

中图分类号: 

  • P595

图1

剖面位置及样品(a)(b)川北地区灯四段沉积期岩相古地理(修改自邹才能等[32])及剖面位置;(c)研究剖面灯四段岩性结构图及取样位置"

图2

微生物碳酸盐岩中的微区组构"

图3

灯影组四段微生物碳酸盐岩特征(a)凝块云岩宏观照,可见格架状凝块结构,灯四段,许家嘴剖面;(b)格架状凝块岩,格架间孔隙被二期胶结物充填,第一期为纤状白云石胶结,第二期为自形程度较高的粒状白云石;(c)分散斑块状凝块岩,单个凝块大小介于0.2~1.5 mm,凝块结构边界呈弥散状;(d)密集丛状凝块岩,凝块结构较小,分布较为密集;(e)分散状凝块岩,凝块空腔内见泥微晶沉积物充填在凝块结构和亮晶白云石之间;(f)丘状叠层石宏观照,灯四段,胡家坝剖面;(g)丘状叠层石微观特征,纹层呈波状起伏,亮纹层厚度(约为0.5 mm)较暗纹层(约0.2 mm)大;(h)具平直纹层的叠层石,灯四段,胡家坝剖面;(i)平直状叠层石,纹层较为平直,纹层横向连续"

表1

灯四段微生物碳酸盐岩微区组构主量、微量元素特征 (×10-6)"

样品编号HJB?K16XJZ?K6XJZ?K10
组别第一组第二组第三组第四组
测试点号HJB?K16?01HJB?K16?02HJB?K16?03HJB?K16?04HJB?K16?05HJB?K16?06XJZ?K6?01XJZ?K6?02XJZ?K6?03XJZ?K10?01XJZ?K10?02XJZ?K10?03
微区组构微生物组构微亮晶组构亮晶组构微生物组构微亮晶组构亮晶组构微生物组构微亮晶组构亮晶组构微生物组构微亮晶组构亮晶组构
MgCO3 (wt%)43.6243.2943.0343.1142.2342.5742.5739.8740.3242.9042.7142.58
CaCO3 (wt%)55.8756.2356.4956.3256.8456.9156.1055.3655.1954.9255.8756.02
Cr0.710.640.081.031.271.321.260.651.062.130.330.11
Mn72.2451.34101.0632.8821.69176.24175.72142.62175.20227.11141.03129.06
Fe216.88219.00217.11389.27197.78205.86230.03205.76184.581520.95272.32289.77
Cu0.070.130.070.750.18/1.610.320.047.240.310.37
Mo/0.03/0.120.06/0.07////0.06
Sr31.1235.9831.2231.6233.8524.3053.2339.3330.4943.5831.6327.67
La0.00250.00230.00250.00210.00480.00130.00410.01810.01140.00290.00120.0003
Ce0.00170.00150.00130.00200.00260.00160.00480.01860.01650.00210.00090.0003
Pr0.00250.00140.00080.00280.00570.00150.00740.02730.02080.00420.00110.0002
Nd0.00150.00170.00170.00290.00440.00030.00780.03060.02360.0015//
Sm0.00210.00400.0079/0.00660.00480.00920.03780.01520.0084//
Eu/0.0075/0.00180.0162/0.00570.06040.02710.00690.00280.0053
Gd//0.00330.0066/0.00530.00240.03660.04780.0124/0.0024
Tb//0.00540.00360.00390.00440.00820.02610.01180.01510.00610.0039
Dy/0.00610.00240.00490.00230.00150.01520.04580.01320.0013//
Y0.00300.00410.00380.00230.00490.00680.02370.04120.02910.01220.00290.0004
Ho0.00450.0029/0.00150.00630.00700.00820.03220.01850.01820.00160.0016
Er0.00560.0029/0.00880.0032/0.02150.02570.00790.00410.00160.0031
Tm0.00550.0031/0.0031/0.01870.01410.00340.00340.0259/0.0033
Yb-0.0020/0.00610.00440.00980.01160.00230.01320.0057--
Lu0.00590.0028////0.00310.0094/0.00390.0032/
ΣREE+Y0.4260.4650.4380.5290.8180.4871.7665.3554.0020.8810.2200.080
(Nd/Yb)SN>10.84>10.470.980.030.6813.561.790.26>1>1
Ce/Ce*0.690.780.780.830.501.150.840.821.030.600.771.39

图4

灯四段微生物碳酸盐岩微区组构地球化学特征(a)(d)(g)(j)分别为样品HJB?K16第一组和第二组数据,XJZ?K6,XJZ?K10原位微区测试位置;(b)(e)(h)(k)分别为对应测试区域的稀土PAAS标准化曲线;(c)(f)(i)(l)为对应样品原位微区元素的相对含量"

图5

有机质降解路径、元素迁移过程、氧化还原电势以及各降解路径的成孔示意图(a)有机质降解路径及元素迁移过程(修改自Widdicombe et al[25]);(b)有机质降解过程所利用电子受体的氧化还原电势(据Piper[55],Madigan et al[26]);(c)微生物岩在各个有机质降解阶段岩石孔隙的变化"

图6

不同有机质降解阶段微生物碳酸盐岩孔隙发育特征(a)(b) HJB-K16,有机质处在有氧降解?硝酸盐还原过程,导致岩石中溶蚀孔隙发育,有机质降解产生的孔隙多发育在凝块结构内部,被后期成岩过程中白云石胶结充填;(c) XJZ?K6,有机质的Fe?Mn氧化物还原降解过程导致岩石胶结紧密;(d) XJZ?K10,有机质降解处在硫酸盐还原阶段,孔隙介于有机质降解处在有氧降解?硝酸盐还原阶段和Fe?Mn氧化物还原阶段的样品之间"

1 宋金民,罗平,杨式升等. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征. 石油勘探与开发,2014,41(4):404-413,437.
Song J M,Luo P,Yang S S,et al. Reservoirs of Lower Cambrian microbial carbonates,Tarim Basin,NW China. Petroleum Exploration and Development,2014,41(4):404-413,437.
2 陈娅娜,沈安江,潘立银等. 微生物白云岩储集层特征、成因和分布——以四川盆地震旦系灯影组四段为例. 石油勘探与开发,2017,44(5):704-715.
Chen Y N,Shen A J,Pan L Y,et al. Features,origin and distribution of microbial dolomite reservoirs:a case study of 4th Member of Sinian Dengying Formation in Sichuan Basin,SW China. Petroleum Exploration and Development,2017,44(5):704-715.
3 Rezende M F,Tonietto S N,Pope M C. Three?dimensional pore connectivity evaluation in a Holocene and Jurassic microbialite buildup. AAPG Bulletin,2013,97(11):2085-2101.
4 Mancini E A,Morgan W A,Harris P M,et al. Introduction:AAPG Hedberg Research Conference on Microbial Carbonate Reservoir Characterization. Conference summary and selected papers. AAPG Bulletin,2013,97(11):1835-1847.
5 方少仙,侯方浩,董兆雄. 上震旦统灯影组中非叠层石生态系兰细菌白云岩. 沉积学报,2003,21(1):96-105.
Fang S X,Hou F H,Dong Z X. Non?stromatoltite ecologic system cyanobacteria dolostone in Dengying Formation of Upper?Sinian. Acta Sedimentologica Sinica,2003,21(1):96-105.
6 陈宗清. 四川盆地震旦系灯影组天然气勘探. 中国石油勘探,2010,15(4):1-14.
Chen Z Q. Gas exploration in Sinian Dengying Formation,Sichuan Basin. China Petroleum Exploration,2010,15(4):1-14.
7 刘家洪,杨平,汪正江等. 黔北震旦系灯影组顶部古风化壳特征及油气意义. 中国地质,2012,39(4):931-938.
Liu J H,Yang P,Wang Z J,et al. Paleo?weathering crust at the top of Sinian Dengying Formation in northern Guizhou and its petroleum exploration significance. Geology in China,2012,39(4):931-938.
8 李凌,谭秀成,曾伟等. 四川盆地震旦系灯影组灰泥丘发育特征及储集意义. 石油勘探与开发,2013,40(6):666-673.
Li L,Tan X C,Zeng W,et al. Development and reservoir significance of mud mounds in Sinian Dengying Formation,Sichuan Basin. Petroleum Exploration and Development,2013,40(6):666-673.
9 赵文智,沈安江,周进高等. 礁滩储集层类型、特征、成因及勘探意义——以塔里木和四川盆地为例. 石油勘探与开发,2014,41(3):257-265.
Zhao W Z,Shen A J,Zhou J G,et al. Types,characteristics,origin and exploration significance of reef?shoal reservoirs:a case study of Tarim Basin,NW China and Sichuan Basin,SW China. Petroleum Exploration and Development,2014,41(3):257-265.
10 Jahnert R J,Collins L B. Significance of subtidal microbial deposits in Shark Bay,Australia. Marine Geology,2011,286(1-4):106-111.
11 Harwood C L,Sumner D Y. Microbialites of the Neoproterozoic Beck Spring Dolomite,Southern California. Sedimentology,2011,58(6):1648-1673.
12 李朋威,罗平,宋金民等. 微生物碳酸盐岩储层特征与主控因素——以塔里木盆地西北缘上震旦统?下寒武统为例. 石油学报,2015,36(9):1074-1089.
Li P W,Luo P,Song,J M,et al. Characteristics and main controlling factors of microbial carbonate reservoirs:a case study of Upper Sinian?Lower Cambrian in the northwestern margin of Tarim Basin. Acta Petrolei Sinica,2015,36(9):1074-1089.
13 宋金民,刘树根,李智武等. 四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素. 石油与天然气地质,2017,38(4):741-752.
Song J M,Liu S G,Li Z W,et al. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin,China. Oil & Gas Geology,2017,38(4):741-752.
14 Rezende M F,Pope M C. Importance of depositional texture in pore characterization of subsalt microbialite carbonates,offshore Brazil. Geological Society,London,Special Publications,2015,418:193.
15 姚根顺,郝毅,周进高等. 四川盆地震旦系灯影组储层储集空间的形成与演化. 天然气工业,2014,34(3):31-37.
Yao G S,Hao Y,Zhou J G,et al. Formation and evolution of reservoir spaces in the Sinian Dengying Fm of the Sichuan Basin. Natural Gas Industry,2014,34(3):31-37.
16 沈安江,赵文智,胡安平等. 海相碳酸盐岩储集层发育主控因素. 石油勘探与开发,2015,42(5):545-554.
Shen A J,Zhao W Z,Hu A P,et al. Major factors controlling the development of marine carbonate reservoirs. Petroleum Exploration and Development,2015,42(5):545-554.
17 Riding R. Microbial carbonates:the geological record of calcified bacterial–algal mats and biofilms. Sedimentology,2000,47:179-214.
18 Glunk C,Dupraz C,Braissant O,et al. Microbially mediated carbonate precipitation in a hypersaline lake,Big Pond (Eleuthera,Bahamas). Sedimentology,2011,58(3):720-736.
19 Visscher P T,Stolz J F. Microbial mats as bioreactors:Populations,processes,and products. Palaeogeography,Palaeoclimatology,Palaeoecology,2005,219(1-2):87-100.
20 Dupraz C,Reid R P,Braissant O,et al. Processes of carbonate precipitation in modern microbial mats. Earth?Science Reviews,2009,96(3):141-162.
21 Froelich P N,Klinkhammer G P,Bender M L,et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:suboxic diagenesis. Geochimica et Cosmochimica Acta,1979,43(7):1075-1090.
22 Canfield D E. Sulfate reduction in deep?sea sediments. American Journal of Science,1991,291(2):177-188.
23 Raiswell R,Fisher Q J. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments:implications for the formation of concretions. Chemical Geology,2004,211(1-2):71-85.
24 Ingalls A E,Aller R C,Lee C,et al. Organic matter diagenesis in shallow water carbonate sediments. Geochimica et Cosmochimica Acta,2004,68(21):4363-4379.
25 Widdicombe S,Spicer J I,Kitidis V. Effects of ocean acidification on sediment fauna∥Gattuso J P,Hansson L J. Ocean acidification. Oxford,UK:Oxford University Press,2011:176-191.
26 Madigan M T,Martinko J M,Bender K S,et al. Brock biology of microorganisms. The 14th Edition. Upper Saddle River,NJ,USA:Prentice Hall,2015:79-89.
27 斯春松,郝毅,周进高等. 四川盆地灯影组储层特征及主控因素. 成都理工大学学报(自然科学版),2014,41(3):266-273.
Si C S,Hao Y,Zhou J G,et al. Characteristics and controlling factors of reservoir in Sinian Dengying Formation,Sichuan Basin,China. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(3):266-273.
28 翟秀芬,汪泽成,罗平等. 四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因. 天然气地球科学,2017,28(8):1199-1210.
Zhai X F,Wang Z C,Luo P,et al. Characteristics and origin of microbial dolomite reservoirs in Upper Sinian Deingying Formation,eastern Gaoshiti area,Sichuan Basin,SW China. Natural Gas Geoscience,2017,28(8):1199-1210.
29 李英强,何登发,文竹. 四川盆地及邻区晚震旦世古地理与构造——沉积环境演化. 古地理学报,2013,15(2):231-245.
Li Y Q,He D F,Wen Z. Palaeogeography and tectonic–depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas. Journal of Palaeogeography,2013,15(2):231-245.
30 刘树根,宋金民,罗平等. 四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景. 成都理工大学学报(自然科学版),2016,43(2):129-152.
Liu S G,Song J M,Luo P,et al. Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin,China. Journal of Chengdu University of Technology (Science & Technology Edition),2016,43(2):129-152.
31 周进高,张建勇,邓红婴等. 四川盆地震旦系灯影组岩相古地理与沉积模式. 天然气工业,2017,37(1):24-31.
Zhou J G,Zhang J Y,Deng H Y,et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin. Natural Gas Industry,2017,37(1):24-31.
32 邹才能,杜金虎,徐春春等. 四川盆地震旦系?寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发,2014,41(3):278-293.
Zhou C N,Du J H,Xu C C,et al. Formation,distribution,resource potential and discovery of the Sinian?Cambrian giant gas field,Sichuan Basin,SW China. Petroleum Exploration and Development,2014,41(3):278-293.
33 刘静江,李伟,张宝民等. 上扬子地区震旦纪沉积古地理. 古地理学报,2015,17(6):735-753.
Liu J J,Li W,Zhang B M,et al. Sedimentary palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography,2015,17(6):735-753.
34 周慧,李伟,张宝民等. 四川盆地震旦纪末期?寒武纪早期台盆的形成与演化. 石油学报,2015,36(3):310-323.
Zhou H,Li W,Zhang B M,et al. Formation and evolution of Upper Sinian to Lower Cambrian intraplatformal basin in Sichuan Basin. Acta Petrolei Sinica,2015,36(3):310-323.
35 郭旭升,胡东风,段金宝等. 四川盆地北部宁强胡家坝灯影组四段岩石特征及沉积环境分析. 石油实验地质,2018,40(6):749-756.
Guo X S,Hu D F,Duan J B,et al. Rock features and sedimentary environment of the fourth member of Dengying Formation in Hujiaba section of Ningqiang,northern Sichuan Basin. Petroleum Geology & Experiment,2018,40(6):749-756.
36 王良军. 川北地区灯影组四段优质储层特征及控制因素. 岩性油气藏,2019,31(2):35-45.
Wang L J. Characteristics and controlling factors of high?quality reservoirs of the fourth member of Dengying Formation in northern Sichuan Basin. Lithologic Reservoirs,2019,31(2):35-45.
37 武赛军,魏国齐,杨威等. 四川盆地桐湾运动及其油气地质意义. 天然气地球科学,2016,27(1):60-70.
Wu S J,Wei G Q,Yang W,et al. Tongwan Movement and its geologic significances in Sichuan Basin. Natural Gas Geoscience,2016,27(1):60-70.
38 杨雨,黄先平,张健等. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义. 天然气工业,2014,34(3):38-43.
Yang Y,Huang X P,Zhang J,et al. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin. Natural Gas Industry,2014,34(3):38-43.
39 Dupraz C,Visscher P T,Baumgartner L K,et al. Microbe?mineral interactions:early carbonate precipitation in a hypersaline lake (Eleuthera Island,Bahamas). Sedimentology,2004,51(4):745-765.
40 Zong K Q,Klemd R,Yuan Y,et al. The assembly of Rodinia:The correlation of early Neoproterozoic (ca. 900 Ma) high?grade metamorphism and continental arc formation in the southern Beishan Orogen,southern Central Asian Orogenic Belt (CAOB). Precambrian Research,2017,290:32-48.
41 Liu Y S,Hu Z C,Gao S,et al. In situ analysis of major and trace elements of anhydrous minerals by LA?ICP?MS without applying an internal standard. Chemical Geology,2008,257(1-2):34-43.
42 Stolz J F. Structure of microbial mat and biofilms∥Riding R E,Awramik S E. Microbial Sediments. Springer Heidelberg,2000:1-8
43 Riding R. Microbialites,stromatolites,and thrombolites∥Reitner J,Thiel V. Encyclopedia of Geobiology. Springer Heidelberg,2011:635-654.
44 Stal L J,van Gemerden H,Krumbein W E. Structure and development of a benthic marine microbial mat. FEMS Microbiology Ecology,1985,31(2):111-125.
45 Vasconcelos C,Warthmann R,McKenzie J A,et al. Lithifying microbial mats in Lagoa Vermelha,Brazil:Modern Precambrian relics. Sedimentary Geology,2006,185(3-4):175-183.
46 Henrichs S M. Early diagenesis of organic matter:The dynamics (rates) of cycling of organic compounds∥Engel M H,Macko S A. Organic geochemistry. Springer Boston MA,1993:101-117.
47 Hunter K S,Wang Y F,Van Cappellen P. Kinetic modeling of microbially?driven redox chemistry of subsurface environments:coupling transport,microbial metabolism and geochemistry. Journal of Hydrology,1998,209(1-4):53-80.
48 Lovley D R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews,1991,55(2):259-287.
49 Monien P,Schnetger B,Brumsack H J,et al. A geochemical record of late Holocene palaeoenvironmental changes at King George Island (maritime Antarctica). Antarctic Science,2011,23(3):255-267.
50 Gerringa L J A. Aerobic degradation of organic matter and the mobility of Cu,Cd,Ni,Pb,Zn,Fe and Mn in marine sediment slurries. Marine Chemistry,1990,29:355-374.
51 Banner J L. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology,1995,42(5):805-824.
52 李双应,金福全,王道轩. 碳酸盐岩成岩作用的微量元素地球化学特征. 石油实验地质,1995,17(1):55-62.
Li S Y,Jin F Q,Wang D X. Geochemical characteristics of carbonate rock diagenesis. Experimental Petroleum Geology,1995,17(1):55-62.
53 邹建军,石学法,李双林. 北黄海浅表层沉积物微量元素的分布及其早期成岩作用探讨. 海洋地质与第四纪地质,2007,27(3):43-50.
Zou J J,Shi X F,Li S L. Distributions of minor elements in near surface sediments in north Yellow Sea and the early diagenesis. Marine Geology & Quaternary Geology,2007,27(3):43-50.
54 Shaw T J,Gieskes J M,Jahnke R A. Early diagenesis in differing depositional environments:the response of transition metals in pore water. Geochimica et Cosmochimica Acta,1990,54(5):1233-1246.
55 Piper D Z. Seawater as the source of minor elements in black shales,phosphorites and other sedimentary rocks. Chemical Geology,1994,114(1-2):95-114.
56 Zheng Y,Anderson R F,van Geen A,et al. Authigenic molybdenum formation in marine sediments:a link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta,2000,64(24):4165-4178.
57 Algeo T J,Maynard J B. Trace?element behavior and redox facies in core shales of Upper Pennsylvanian Kansas?type cyclothems. Chemical Geology,2004,206(3-4):289-318.
58 Takahashi S,Yamasaki S I,Ogawa Y,et al. Bioessential element?depleted ocean following the euxinic maximum of the end?Permian mass extinction. Earth & Planetary Science Letters,2014,393:94-104.
59 Tostevin R,Shields G A,Tarbuck G M,et al. Effective use of cerium anomalies as a redox proxy in carbonate?dominated marine settings. Chemical Geology,2016,438:146-162.
60 Lovley D R,Phillips E J P,Gorby Y A,et al. Microbial reduction of uranium. Nature,1991,350(6317):413-416.
61 Canfield D E,Thamdrup B,Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments:iron reduction,manganese reduction,and sulfate reduction. Geochimica et Cosmochimica Acta,1993,57(16):3867-3883.
62 Canfield D E,Thamdrup B. Towards a consistent classification scheme for geochemical environments,or,why we wish the term ‘suboxic’ would go away. Geobiology,2009,7(4):385-392.
63 Schunck H,Lavik G,Desai D K,et al. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS One,2013,8(8):e68661.
64 McManus J,Berelson W M,Severmann S,et al. Molybdenum and uranium geochemistry in continental margin sediments:paleoproxy potential. Geochimica et Cosmochimica Acta,2006,70(18):4643-4662.
65 Zeng Z,Tice M M. Promotion and nucleation of carbonate precipitation during microbial iron reduction. Geobiology,2014,12(4):362-371.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许 林,张 巍*,梁小龙,肖 瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1105 -1113 .
[2] 章康宁, 卢 晶. 指向性小尺度线性扬声器阵列鲁棒性研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 180 -190 .
[3] 彭 宏, 刘 晨, 卢为党, 张 昱, 刘 鑫, 徐志江. 协作中继传输网络中基于无线供电的能量交易方法[J]. 南京大学学报(自然科学版), 2019, 55(2): 202 -210 .
[4] 杨 薇, 王洪元, 张 继, 张中宝. 一种基于Faster-RCNN的车辆实时检测改进算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 231 -237 .
[5] 肖梦君, 吴俊仙, 张 娜, 陈 昕, 饶泽兵, 陈允梓. VDR基因肠上皮特异性敲除小鼠的构建及其对炎症性肠病的影响[J]. 南京大学学报(自然科学版), 2019, 55(2): 332 -338 .
[6] 王广辉,杨高东,周 政,张志炳. 丙酸异龙脑酯的合成、反应热力学和反应动力学研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 486 -497 .
[7] 黄炜钦, 高凤强, 陈俊仁, 李婵. 联合深度置信网络与邻域回归的超分辨率算法[J]. 南京大学学报(自然科学版), 2019, 55(4): 581 -591 .
[8] 徐扬,周文瑄,阮慧彬,孙雨,洪宇. 基于层次化表示的隐式篇章关系识别[J]. 南京大学学报(自然科学版), 2019, 55(6): 1000 -1009 .
[9] 刘作国,陈笑蓉. 汉语句法分析中的论元关系模型研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 1010 -1019 .
[10] 柴变芳,魏春丽,曹欣雨,王建岭. 面向网络结构发现的批量主动学习算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 1020 -1029 .