南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (2): 244–252.doi: 10.13232/j.cnki.jnju.2020.02.010

• • 上一篇    下一篇

腺苷酸激酶催化产物释放过程中的水化动力学研究

孔剑阳(),李文飞,王炜   

  1. 南京大学物理学院,南京,210093
  • 收稿日期:2019-07-23 出版日期:2020-03-30 发布日期:2020-04-02
  • 通讯作者: 孔剑阳 E-mail:njukongjy@163.com
  • 基金资助:
    国家自然科学基金(11574132)

Hydration process in the product releasing of the enzymatic cycle of Adenylate Kinase

Jianyang Kong(),Wenfei Li,Wei Wang   

  1. School of Physics,Nanjing University,Nanjing,210093,China
  • Received:2019-07-23 Online:2020-03-30 Published:2020-04-02
  • Contact: Jianyang Kong E-mail:njukongjy@163.com

摘要:

腺苷酸激酶(Adenylate Kinase,AdK)是一种多底物反应酶,催化ATP?Mg2++AMP?ADP?Mg2++ADP反应,维持机体能量平衡;其催化循环限速步骤为底物ADP(Adenosine Diphosphate)释放,并伴随蛋白质的构象变化和关键位点水化(hydration)过程.以往的研究表明,底物ATP(Adenosine Triphosphate)和产物ADP共存的复合物共存态(ATP?ADP共存态)有助于作为限速步骤的产物释放.基于分子动力学模拟和哈密顿量副本交换方法研究AdK产物释放过程中,Mg2+、产物磷酸根、底物磷酸根以及催化位点关键氨基酸的水化过程.分子模拟数据表明,在产物ADP释放过程中,与Mg2+结合的磷酸根氧原子逐步被水分子取代,表现出配位交换过程,其中ATP?ADP共存态相较于ADP?ADP共存态表现出更为显著的配位交换.Mg2+周围水分子径向分布函数的差别也表明ATP?ADP共存态下,Mg2+的水化过程需要更多的水分子进入Mg2+的第一配位壳,表现出与双产物共存状态(ADP?ADP共存态)所不同的行为.另外,还详细研究了产物ADP以及结合位点关键氨基酸的水化过程.由于AdK核心区域的水化过程会影响其产物释放,关于水化过程的研究有助于理解AdK催化循环中的产物释放等物理过程的分子机制.

关键词: 腺苷酸激酶, 水化过程, 分子动力学, 产物释放, 催化循环

Abstract:

Adenylate kinase (AdK) is a multisubstrate enzyme catalyzing the reversible phosphoryl transfer reactionATP?Mg2++AMP?ADP?Mg2++ADP and maintaining the energy balance of the body. The rate?limiting step of the whole AdK catalytic cycle is the product ADP releasing which is coupled with conformational change and hydration process. Recent research reveals that the substrate ATP and product ADP cobound state tends to facilitate the rate?limiting product releasing. In this work,by using all?atom molecular dynamics simulations with hamiltonian replica exchange and umbrella sampling,we simulated the hydration process of theMg2+,phosphate groups of the products/substrates and the key residues in the binding sites during the disassociation of product ADP. The results show that the oxygen atoms of the phosphate groups coordinated withMg2+ can be gradually replaced by water molecules during the releaing process of the product ADP,demonstrating a coordination exchange process. Meanwhile,the results show that the coordination exchange is more prominent in the substrate?product cobound state than that in the two?product bound state. In addition,the radial distribution function of water molecules around theMg2+ reveals that more water molecules enter into the fist cooridnation shell in the substrate?product cobound state. We also analyzed the detailed hydration process of the product ADP and the key residues in the binding sites. As the hydration process can affect the product releasing,our work provides insight into the detailed molecular mechanism of the product release of the enzymatic cycle of AdK.

Key words: Adenylate Kinase, hydration, molecular dynamics, product release, enzymatic cycle

中图分类号: 

  • O641

图1

(a) AdK构象关闭状态的晶体结构(PDB code: 1AKE[18]);(b) AdK构象打开状态的晶体结构(PDB code: 4AKE[19])(c, d) AdK的两种可能的催化循环路径,路径(c)不涉及底物ATP与产物ADP共存的状态(ATP?ADP共存态),路径(d)经由ATP?ADP共存态"

图2

(a) DD,TD态下AdK在构象闭态和构象开态中Mg2+配位水分子数目(误差棒表示对应状态的水分子数目的标准误差);"

图3

DD态(a)、TD态(b)下NMP结构域产物ADP释放过程中Mg2+配位数的变化;DD态(c)、TD态(d)下NMP结构域产物ADP释放过程中Mg2+配位结构变化示意图"

图4

DD态(a)、TD态(b)下,NMP产物ADP释放过程的不同阶段Mg2+周围水分子的径向分布函数"

图5

(a,b) DD态(a)和TD态(b)下,与蛋白质底物/产物结合位点关键氨基酸结合的水分子数目;(c,d) DD态(c)和TD态(d)下,与底物/产物分子结合的水分子数目;(e,f) DD态和TD态下,LID?core结构域质心距离(e)和NMP?core结构域质心距离(f)变化."

1 Alberts B,Johnson A,Lewis J,et al.The cell cycle and programmed cell death∥Molecular biology of the cell.The 4th Edition.New York:Garland Science,2002:983-1027.
2 Hammes G G.Multiple conformational changes in enzyme catalysis.Biochemistry,2002,41(26):8221-8228.
3 Henzler?Wildman K A,Thai V,Lei M,et al.Intrinsic motions along an enzymatic reaction trajectory.Nature,2007,450(7171):838-844.
4 Kerns S J,Agafonov R V,Cho Y J,et al.The energy landscape of adenylate kinase during catalysis.Nature Structural & Molecular Biology,2015,22(2):124-131.
5 Hanson J A,Duderstadt K,Watkins L P,et al.Illuminating the mechanistic roles of enzyme conformational dynamics.Proceedings of the National Academy of Sciences of the United States of America,2007,104(46):18055-18060.
6 Saavedra H G,Wrabl J O,Anderson J A,et al.Dynamic allostery can drive cold adaptation in enzymes.Nature,2018,558(7709):324-328.
7 Müller C,Schlauderer G J,Reinstein J,et al.Adenylate kinase motions during catalysis:An energetic counterweight balancing substrate binding.Structure,1996,4(2):147-156.
8 Knowles J R.Enzyme?catalyzed phosphoryl transfer reactions.Annual Review of Biochemistry,1980,49(1):877-919.
9 Ariyaratne A,Wu C H,Tseng C Y,et al.Dissipative dynamics of enzymes.Physical Review Letters,2014,113(19):198101.
10 Qu H,Zocchi G.How enzymes work:A look through the perspective of molecular viscoelastic properties.Physical Review X,2013,3(1):011009.
11 Pisliakov A V,Cao J,Kamerlin S C L,et al.Enzyme millisecond conformational dynamics do not catalyze the chemical step.Proceedings of the National Academy of Sciences of the United States of America,2009,106(41):17359-17364.
12 Chu W T,Wang J.Energy landscape topography reveals the underlying link between binding specificity and activity of enzymes.Scientific Reports,2016,6(10):27808.
13 Wang Y,Gan L F,Wang E K,et al.Exploring the dynamic functional landscape of Adenylate Kinase modulated by substrates.Journal of Chemical Theory and Computation,2013,9(1):84-95.
14 Ye C,Ding C T,Ma R S,et al.Electrostatic interactions determine entrance/release order of substrates in the catalytic cycle of adenylate kinase.Proteins:Structure,Function,and Bioinformatics,2019,87(4):337-347.
15 Adkar B V,Jana B,Bagchi B.Role of water in the enzymatic catalysis:Study of ATP + AMP→2ADP conversion by Adenylate Kinase.Journal of Physical Chemistry A,2011,115(16):3691-3697.
16 崔大超,任卫同,李文飞等.腺苷酸激酶催化循环后期Mg2+转移的分子动力学模拟.物理化学学报2016,32(2):429-435.
Cui D C,Ren W T,Li W F,et al.Metadynamics simulations of Mg2+ transfer in the late stage of the adenylate kinase catalytic cycle.Acta Physical?Chimical Sinica,2016,32(2):429-435.
17 Li W F,Wang J,Zhang J,et al.Overcoming the bottleneck of the enzymatic cycle by steric frustration.Physical Review Letters,2019,122(23):238102.
18 Bellinzoni M,Haouz A,Gra?a M,et al.The crystal structure of Mycobacterium tuberculosis adenylate kinase in complex with two molecules of ADP and Mg2+ supports an associative mechanism for phosphoryl transfer.Protein Science,2006,15(6):1489-1493.
19 Müller C W,Schlauderer G J,Reinstein J,et al.Adenylate kinase motions during catalysis:an energetic counterweight balancing substrate binding.Structure,1996,4(2):147-156.
20 Berry M B,Phillips G N.Crystal structures ofBacillus stearothermophilus adenylate kinase with bound Ap5A,Mg2+ Ap5A,and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+.Proteins:Structure,Function,and Bioinformatics,1998,32(3):276-288.
21 Jorgensen W L,Chandrasekhar J,Madura J D,et al.Comparison of simple potential functions for simulating liquid water.Journal of Chemical Physics,1983,79(2):926-935.
22 Case D A,Babin V,Berryman J,et al.Amber 14.San Francisco:University of California Publish,2014.
23 Hornak V,Abel R,Okur A,et al.Comparison of multiple Amber force fields and development of improved protein backbone parameters.Proteins:Structure,Function,and Bioinformatics,2006,65(3):712-725.
24 Meagher K L,Redman L T,Carlson H A.Development of polyphosphate parameters for use with the AMBER force field.Journal of Computational Chemistry,2003,24(9):1016-1025.
25 Allnér O,Nilsson L,Villa A.Magnesium ion–water coordination and exchange in biomolecular simulations.Journal of Chemical Theory and Computation,2012,8(4):1493-1502.
26 Joung I S,Cheatham T E.Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations.Journal of Physical Chemistry B,2008,112(30):9020-9041.
27 Darden T,York D,Pedersen L.Particle mesh Ewald:AnN·log(N) method for Ewald sums in large systems.The Journal of Chemical Physics,1993,98(12):10089-10092.
28 Andersen H C.Rattle:A “velocity” version of the shake algorithm for molecular dynamics calculations.Journal of Computational Physics,1983,52(1):24-34.
29 Fletcher R,Powell M J D.A rapidly convergent descent method for minimization.The Computer Journal,1963,6(2):163-168.
30 Torrie G M,Valleau J P.Nonphysical sampling distributions in Monte Carlo free?energy estimation:Umbrella sampling.Journal of Computational Physics,1977,23(2):187-199.
31 Pelz B,?oldák G,Zeller F,et al.Subnanometre enzyme mechanics probed by single?molecule force spectroscopy.Nature Communications,2016,7:10848.
32 Schlitter J,Engels M,Krüger P.Targeted molecular dynamics:A new approach for searching pathways of conformational transitions.Journal of Molecular Graphics,1994,12(2):84-89.
33 Rutkowska?Zbik D,Witko M,Fiedor L.Ligation of water to magnesium chelates of biological importance.Journal of Molecular Modeling,2013,19(11):4661-4667.
34 Dudev T,Cowan J A,Lim C.Competitive binding in magnesium coordination chemistry:Water versus ligands of biological interest.Journal of the American Chemical Society,1999,121(33):7665-7673.
35 Liu C,Zhang Y Y,Zhang J,et al.Interplay between translational diffusion and large?amplitude angular jumps of water molecules.The Journal of Chemical Physics,2018,148(18):184502.
[1] 郭小松,赵红丽,贾俊芳,杨静,孟祥军. 密度泛函理论方法研究第一系列过渡金属对甘氨酸的配位能力[J]. 南京大学学报(自然科学版), 2019, 55(6): 1040-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李二超,马玉泉. 基于就近取值策略的离散多目标优化[J]. 南京大学学报(自然科学版), 2018, 54(6): 1216 -1224 .
[2] 贾海宁, 王士同. 面向重尾噪声的模糊规则模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 61 -72 .
[3] 钱付兰, 黄鑫, 赵姝, 张燕平. 基于路径相互关注的网络嵌入算法[J]. 南京大学学报(自然科学版), 2019, 55(4): 573 -580 .
[4] 张弘,申俊峰,董国臣,刘圣强,王冬丽,王伟清. 云南来利山锡矿锡石标型特征及其找矿意义[J]. 南京大学学报(自然科学版), 2019, 55(6): 888 -897 .
[5] 王大洋. 渤南洼陷沙三下亚段烃源岩地球化学特征及差异性研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 924 -933 .
[6] 张家精,夏巽鹏,陈金兰,倪友聪. 基于张量分解和深度学习的混合推荐算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 952 -959 .
[7] 郑文萍,刘韶倩,穆俊芳. 一种基于相对熵的随机游走相似性度量模型[J]. 南京大学学报(自然科学版), 2019, 55(6): 984 -999 .
[8] 秦洋,姚素平,萧汉敏. 致密砂岩储层孔⁃喉连通性研究[J]. 南京大学学报(自然科学版), 2020, 56(3): 338 -353 .
[9] 高云樵,马建敏. 变精度区间集概念格[J]. 南京大学学报(自然科学版), 2020, 56(4): 437 -444 .