南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (2): 159–166.doi: 10.13232/j.cnki.jnju.2020.02.001

• •    下一篇

基于EEG握力变化及想象单次识别研究

陈睿,伏云发()   

  1. 昆明理工大学信息工程与自动化学院,昆明,650500
  • 收稿日期:2019-12-01 出版日期:2020-03-30 发布日期:2020-04-02
  • 通讯作者: 伏云发 E-mail:fyf@ynu.edu.cn
  • 基金资助:
    国家自然科学基金(81470084)

Single⁃trial recognition of actual/imagined forces of hand clenching based on Electroencephalogram

Rui Chen,Yunfa Fu()   

  1. School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming,650500, China
  • Received:2019-12-01 Online:2020-03-30 Published:2020-04-02
  • Contact: Yunfa Fu E-mail:fyf@ynu.edu.cn

摘要:

目前基于运动想象(Motor Imagery,MI)的脑?机接口(Brain?Computer Interface,BCI)可提供的指令数相对较少,为增加新的控制参数,基于脑电(Electroencephalogram,EEG)研究握力变化及想象的单次识别.招募20名被试者参与实验,要求被试者用右手执行三种不同握力大小(4 kg,10 kg,16 kg)的实际或想象任务,对任务期间覆盖运动区的九个通道的EEG数据进行分析,采用共同空间模式(Common Spatial Pattern,CSP)提取特征,然后利用极限学习机(Extreme Learning Machine,ELM)和支持向量机(Support Vector Machine,SVM)进行单次识别.ELM对三类握力变化及想象的平均单次识别准确率分别为82.3%±2.1%和80%±1%,SVM对三类握力变化及其想象的平均单次识别准确率分别为86.3%±5.5%和83.7%±3.8%.实验结果表明,ELM和SVM能有效地识别三种不同握力大小的实际或想象任务,而SVM的分类结果更好,可望为MI?BCI增加新的控制参数提供新思路.

关键词: 脑?机接口, 脑 电, 握力变化想象, 极限学习机, 单次识别

Abstract:

At present,Brain?Computer Interface (BCI) based on Motor Imagery (MI) provides relatively few instructions. To add new control parameters,this paper studies the single?trial recognition of actual and imagined forces of hand clenching based on Electroencephalogram (EEG). Twenty subjects recruited to participate in the experiment. They were instructed to perform three different actual/imagined hand?clenching force tasks (4 kg,10 kg,16 kg) with their right hand. The EEG data of nine channels over the primary motor area and the supplementary motor area during the task were analyzed,and the Common Spatial Pattern (CSP) was used to extract features of actual/imagined force of hand clenching,which were single?trial recognized by two classifiers: Extreme Learning Machines (ELM) and Support Vector Machines (SVM). The average ELM single?trial recognition accuracy for three different actual/imagined hand?clenching force tasks was 82.3%±2.1% and 80%±1%,respectively. The average SVM single?trial recognition accuracy for three different actual/imagined hand?clenching force tasks was 86.3%±5.5% and 83.7%±3.8%,respectively. The results show that the ELM and SVM can effectively identify three different actual/imagined hand?clenching force tasks,and the classification result of SVM is better. This study is expected to provide a new idea for adding new control parameters to MI?BCI.

Key words: Brain?Computer Interface (BCI), Electroencephalogram (EEG), actual/imagined force change of hand clenching, Extreme Learning Machines (ELM), single?trial recognition

中图分类号: 

  • TP391.41

图1

不同等级握力、肌电曲线示意图"

图2

单个Trial执行握力或想象握力任务的时序图"

图3

实验设置及信号同步方法示意图"

图4

EEG数据采集电极位置排布图"

图5

4 kg,10 kg和16 kg实际和想象的右手握力地形图"

表1

ELM和SVM算法单次识别实际和想象右手握力变化的准确率"

算法ELMSVM
实际握力82.3%±2.1%86.3%±5.5%
想象握力80%±1%83.7%±3.8%
1 Wang X Y,Jin J,Zhang Y,et al.Brain control:human?computer integration control based on brain?computer interface approach.Acta Automatica Sinica,2013,39(3):208-221.
2 Shibasaki H,Barrett G,Halliday E,et al.Cortical potentials associated with voluntary foot movement in man.Electroencephalography and Clinical Neuro?physiology,1981,52(6):507-516.
3 Gu Y,Dremstrup K,Farina D.Single?trial discrimination of type and speed of wrist movements from EEG recordings.Clinical Neurophysiology,2009,120(8):1596-1600.
4 伏云发,徐保磊,李永程等.基于运动相关皮层电位握力运动模式识别研究.自动化学报,2014,40(6):1045-1057.
Fu Y F,Xu B L,Li Y C,et al. Recognition of actual grip force movement modes based on movement?related cortical potentials. Acta Automatica Sinica,2014,40(6):1045-1057.
5 Liu Y,Li M F,Zhang H,et al.A tensor?based scheme for stroke patients' motor imagery EEG analysis in BCI?FES rehabilitation training.Journal of Neuroscience Methods,2014,222:238-249.
6 Meng J J,Zhang S Y,Bekyo A,et al.Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks.Scientific Reports,2016,6:38565.
7 Ang K K,Guan C T,Chua K S G,et al.A large clinical study on the ability of stroke patients to use an EEG?based motor imagery brain?computer inter?face.Clinical EEG and Neuroscience,2011,42(4):253-258.
8 Aschersleben G.Temporal control of movements in sensorimotor synchronization.Brain and Cognition,2002,48(1):66-79.
9 Kopp B,Kunkel A,Müller G,et al.Steady?state movement?related potentials evoked by fast repetitive movements.Brain Topography,2000,13(1):21-28.
10 Do Nascimento O F,Farina D.Movement?related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion.IEEE Transactions on Biomedical Engineering,2008,55(11):2675-2678.
11 Yuan H,Perdoni C,He B.Relationship between speed and EEG activity during imagined and executed hand movements.Journal of Neural Engineering,2010,7(2):026001.
12 Fu Y F,Xiong X,Jiang C H,et al.Imagined hand clenching force and speed modulate brain activity and are classified by NIRS combined with EEG.IEEE Transactions on Neural Systems and Rehabilitation Engineering,2016,25(9):1641-1652.
13 Wu D R,King J T,Chuang C H,et al.Spatial filtering for EEG?based regression problems in Brain?Computer Interface (BCI).IEEE Transactions on Fuzzy Systems,2017,26(2):771-781.
14 Zhang Y,Zhou G X,Jin J,et al.Optimizing spatial patterns with sparse filter bands for motor?imagery based brain?computer interface.Journal of Neuro?science Methods,2015,255:85-91.
15 Jiang T X,Jiang T,Wang T,et al.Characterization and decoding the spatial patterns of hand extension/flexion using high?density ECoG.IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(4):370-379.
16 Enshaeifar S,Took C C,Park C,et al.Quaternion common spatial patterns.IEEE Transactions on Neural Systems and Rehabilitation Engineering,2016,25(8):1278-1286.
17 Wu W,Gao X R,Gao S K.One?Versus?the?Rest (OVR) algorithm:an extension of Common Spatial Patterns (CSP) algorithm to multi?class case∥2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.Shanghai,China:IEEE,2006.
18 Webb A R.Statistical pattern recognition.Second Edition. John Wiley & Sons,Ltd.,2002,491.
19 Cortes C,Vapnik V.Support?vector networks.Machine Learning,1995,20(3):273-297.
20 Huang G B,Zhou H M,Ding X J,et al.Extreme learning machine for regression and multiclass classification.IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),2012,42(2):513-529.
21 Banerjee K S.Generalized inverse of matrices and its applications by C.Radhakrishna Rao,Sujit Kumar Mitra. Technometrics,1973,15(1):197.
22 Pfurtscheller G,Da Silva F H L.Event?related EEG/MEG synchronization and desynchronization:basic principles.Clinical Neurophysiology,1999,110(11):1842-1857.
23 Miche Y,Sorjamaa A,Bas P,et al.OP?ELM:optimally pruned extreme learning machine.IEEE Transactions on Neural Networks,2010,21(1):158-162.
24 Xiong X,Fu Y F,Chen J,et al.Single?trial recognition of imagined forces and speeds of hand clenching based on brain topography and brain network.Brain Topography,2019,32(2):240-254.
[1] 杨 蕴, 宋 健, 朱 琳, 吴剑锋, 王锦国. 基于KELM地面沉降替代模型的地下水多目标管理模型研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 349-360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 巍, 王 鸥, 刚毅凝, 周杨浩, 郝跃冬. 一种自动读取指针式仪表读数的方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 117 -124 .
[2] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440 -448 .
[3] 徐扬,周文瑄,阮慧彬,孙雨,洪宇. 基于层次化表示的隐式篇章关系识别[J]. 南京大学学报(自然科学版), 2019, 55(6): 1000 -1009 .
[4] 郭小松,赵红丽,贾俊芳,杨静,孟祥军. 密度泛函理论方法研究第一系列过渡金属对甘氨酸的配位能力[J]. 南京大学学报(自然科学版), 2019, 55(6): 1040 -1046 .
[5] 李勤,陆现彩,张立虎,程永贤,刘鑫. 蒙脱石层间阳离子交换的分子模拟[J]. 南京大学学报(自然科学版), 2019, 55(6): 879 -887 .
[6] 张弘,申俊峰,董国臣,刘圣强,王冬丽,王伟清. 云南来利山锡矿锡石标型特征及其找矿意义[J]. 南京大学学报(自然科学版), 2019, 55(6): 888 -897 .
[7] 王大洋. 渤南洼陷沙三下亚段烃源岩地球化学特征及差异性研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 924 -933 .
[8] 郑文萍,刘韶倩,穆俊芳. 一种基于相对熵的随机游走相似性度量模型[J]. 南京大学学报(自然科学版), 2019, 55(6): 984 -999 .
[9] 游杰, 胡广, 张玺华, 沈安江, 彭瀚霖, 田兴旺, 赵东方. 微生物碳酸盐岩同生⁃早成岩阶段有机质降解示踪:以四川盆地灯影组四段为例[J]. 南京大学学报(自然科学版), 2020, 56(3): 308 -321 .
[10] 刘文平,周政,吴娟,罗超,吴伟,姜磊,焦堃,叶玥豪,邓宾. 川南盆地长宁页岩气田五峰组⁃龙马溪组成藏动力学过程及其意义[J]. 南京大学学报(自然科学版), 2020, 56(3): 393 -404 .