南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (6): 1040–1046.doi: 10.13232/j.cnki.jnju.2019.06.016

• • 上一篇    

密度泛函理论方法研究第一系列过渡金属对甘氨酸的配位能力

郭小松,赵红丽,贾俊芳,杨静,孟祥军()   

  1. 唐山师范学院化学系,唐山,063000
  • 收稿日期:2019-05-05 出版日期:2019-11-30 发布日期:2019-11-29
  • 通讯作者: 孟祥军 E-mail:xjmeng_1974@126.com
  • 基金资助:
    河北省高等学校科学技术研究项目(Z2019007);唐山师范学院科学研究项目(2017B01)

Density functional theory study on coordination ability of glycineand the first series transition metals

Xiaosong Guo,Hongli Zhao,Junfang Jia,Jing Yang,XiangJun Meng()   

  1. Department of Chemistry, Tangshan Normal University, Tangshan, 063000, China
  • Received:2019-05-05 Online:2019-11-30 Published:2019-11-29
  • Contact: XiangJun Meng E-mail:xjmeng_1974@126.com

摘要:

采用密度泛函理论的B3LYP方法,在6?31++G(d,p)基组水平研究第一系列过渡金属二价离子对甘氨酸的配位能力,在M06/6?311+G(d,p)水平上计算构型单点能量与前者对照.每种金属离子配合物的最稳定构型中甘氨酸以羧基的两个O原子配位.金属离子对甘氨酸的配位能力由大到小的次序为Cu2+>Ni2+> Co2+>Zn2+>Cr2+> Fe2+>V2+>Mn2+>Ti2+>Sc2+;结合能最大达到-1012.1 kJ·mol-1.每种构型中轨道相互作用能与静电相互作用能所占比率在50%左右(相差不多),色散作用仅为0.2%.轨道作用能越大的构型,电子转移数越多.

关键词: 甘氨酸, 金属配合物, 稳定性, 能量分解

Abstract:

B3LYP/6?31++G(d,p) and M06/6?311+G(d,p) methods were applied to investigate the coordination ability of glycine and the first series transition metals. In the most stable structure of every kind metal complex,coordination atoms from glycine are the two oxygen atoms. The order of coordination ability of each metal from big to small is as follows: Cu2+>Ni2+> Co2+>Zn2+>Cr2+> Fe2+>V2+>Mn2+>Ti2+>Sc2+,and binding energy of the most stable complex is -1012.1 kJ?mol-1. In each structure,the rate of orbital interaction energy and electrostatic energy is close to 50% respectively,The dispersion energy is only 0.2%. The more orbital interaction energy ,the more the number of electrons transferred.

Key words: glycine, metal complexes, stability, energy decomposition

中图分类号: 

  • O641

图1

甘氨酸金属配合物的最优势结构"

表1

构型[M(Gly1)]2+和[M(Gly2)]2+中的配位键键长数据(单位:pm)"

M Sc Ti V Cr Mn Fe Co Ni Cu Zn
[M(Gly1)]2+ R M - O 3 208.9 205.1 199.0 196.8 202.5 198.2 195.0 191.7 194.0 198.1
R M - O 4 214.7 210.0 202.7 200.8 208.8 204.0 200.1 195.8 198.8 203.9
[M(Gly2)]2+ R M - O 4 203.6 200.0 195.3 191.4 197.6 190.7 187.9 187.3 186.6 192.2
R M - N 5 233.3 224.1 216.0 210.2 216.4 210.9 205.2 201.8 197.9 202.5

表2

[M(Gly1)]2+稳定构型的结合能(单位:kJ?mol-1)"

[M(Gly1)]2+ ΔE b 1(kJ·mol-1) ΔΔE b 2-1(kJ·mol-1) ΔΔE b 3-1(kJ·mol-1)
B3LYP M06 B3LYP M06 B3LYP M06
[Sc(Gly1)]2+ -625.4 -595.2 47.8 37.3 67.1 57.4
[Ti(Gly1)]2+ -679.5 -656.8 54.9 46.5 75.5 66.2
[V(Gly1)]2+ -743.6 -672.1 28.9 9.9 50.2 32.2
[Cr(Gly1)]2+ -801.8 -763.2 31.7 20.4 53.3 43.3
[Mn(Gly1)]2+ -719.2 -674.8 32.0 20.4 54.7 44.3
[Fe(Gly1)]2+ -771.4 -737.8 -1.7 -8.6 20.2 14.4
[Co(Gly1)]2+ -884.7 -825.6 55.8 20.7 48.1 53.5
[Ni(Gly1)]2+ -927.3 -849.2 31.0 -7.6 54.3 17.1
[Cu(Gly1)]2+ -1012.1 -970.1 24.5 16.3 48.1 41.3
[Zn(Gly1)]2+ -863.2 -818.5 4.7 -7.2 31.2 20.3

表3

B3LYP方法下各构型[M(Gly1)]2+的相互作用能及其能量分解(单位:kJ·mol-1)"

[M(Gly1)]2+ ΔE inter ΔE orb ΔE ex ΔE els ΔE disp ΔE deform ΔQ
[Sc(Gly1)]2+ -774.2 -424.4(50.7%) 63.2 -410.9(49.1%) -2.1(0.2%) 148.8 0.28
[Ti(Gly1)]2+ -834.9 -458.5(50.3%) 76.5 -450.7(49.5%) -2.2(0.2%) 155.4 0.31
[V(Gly1)]2+ -906.0 -559.5(56.2%) 89.4 -433.6(43.6%) -2.3(0.2%) 162.4 0.39
[Cr(Gly1)]2+ -982.7 -608.8(57.1%) 83.8 -455.4(42.7%) -2.3(0.2%) 180.9 0.43
[Mn(Gly1)]2+ -888.7 -450.2(46.4%) 81.5 -517.7(53.4%) -2.3(0.2%) 169.5 0.30
[Fe(Gly1)]2+ -968.6 -515.0(48.4%) 95.3 -546.6(51.4%) -2.3(0.2%) 197.2 0.36
[Co(Gly1)]2+ -1017.1 -563.6(51.2%) 83.4 -534.7(48.6%) -2.2(0.2%) 132.4 0.43
[Ni(Gly1)]2+ -1123.9 -668.3(54.8%) 95.3 -548.6(45.0%) -2.3(0.2%) 196.6 0.52
[Cu(Gly1)]2+ -1208.1 -707.6(54.9%) 80.9 -579.2(44.9%) -2.2(0.2%) 196.0 0.64
[Zn(Gly1)]2+ -1029.3 -512.7(47.0%) 62.1 -576.5(52.8%) -2.2(0.2%) 166.1 0.36

表4

M06方法下各构型[M(Gly1)]2+的相互作用能及其能量分解(单位:kJ·mol-1)"

[M(Gly1)]2+ ΔE inter ΔE orb ΔE ex ΔE els ΔE disp ΔE deform ΔQ
[Sc(Gly1)]2+ -753.3 -439.4(52.1%) 89.4 -402.6(47.8%) -0.7(0.1%) 158.1 0.23
[Ti(Gly1)]2+ -845.1 -471.1(51.0%) 78.5 -451.7(48.9%) -0.7(0.1%) 188.3 0.31
[V(Gly1)]2+ -893.4 -542.2(54.2%) 107.0 -457.5(45.7%) -0.8(0.1%) 221.3 0.38
[Cr(Gly1)]2+ -960.4 -583.5(55.5%) 90.8 -467.2(44.4%) -0.6(0.1%) 197.2 0.42
[Mn(Gly1)]2+ -858.5 -414.4(43.8%) 87.8 -531.1(56.1%) -0.8(0.1%) 183.7 0.27
[Fe(Gly1)]2+ -901.0 -490.3(49.1%) 97.1 -506.8(50.8%) -1.0(0.1%) 163.1 0.35
[Co(Gly1)]2+ -1024.7 -572.5(51.4%) 88.5 -540.0(48.5%) -0.8(0.1%) 199.1 0.44
[Ni(Gly1)]2+ -1076.8 -611.9(52.1%) 98.5 -562.5(47.8%) -0.8(0.1%) 227.5 0.53
[Cu(Gly1)]2+ -1184.6 -679.2(52.7%) 103.3 -608.0(47.2%) -0.8(0.1%) 214.5 0.65
[Zn(Gly1)]2+ -998.4 -482.1(43.1%) 119.7 -635.3(56.8%) -0.8(0.1%) 179.9 0.37
1 虞俊翔,孙南耀,王光然 等 . 微量元素氨基酸螯合物的生物学效价研究进展. 食品科学,2015,36 (23):367-371.
Yu J , Sun N , Wang G ,et al . Advances in bioavailability of amino acides microelements chelate. Food Science,2015,36 (23) :367-371.
2 董璐 .氨基酸金属配合物的合成与表征. 硕士学位论文.北京:北京理工大学,2015.
Dong L . The synthesis and characterization of coordination complexes with amino acid ligands. Master Dissertation. Beijing:Beijing Institute of Technology,2015.
3 武伦福,黄劲苗,谢桂雄 等 . 甘氨酸锰络合物的制备与结构表征. 广州大学学报(自然科学版),2015,14(1):36-38.
Wu L , Huang J , Xie G ,et al . Preparation and characterization of manganese glycine complex. Journal of Guangzhou University(Natural Science Edition),2015,14(1):36-38.
4 Yin L , Liu X , Yi L ,et al . Structural characterization of calcium glycinate,magnesium glycinate and zinc glycinate. Journal of Innovative Optical Health Sciences,2017,10(3):1650052(1-10.
5 贺晓林 .铜?甘氨酸体系的光谱电化学研究. 硕士学位论文.合肥:合肥工业大学,2015.
He X L . Spectroelectrochemical study of copper?glycine system. Master Dissertation,Hefei:Hefei University of Technology,2015.
6 Guo L , Shen X , Kaya S ,et al . Adsorption of amino acid inhibitors on iron surface:a first?principles investigation. Surface Technology,2017,46(4):228-234.
7 Hoyau S , Ohanessian G . Interaction of alkali metal cations (Li+–Cs+) with glycine in the gas phase:a theoretical study. Chemistry ? A European Journal,1998,4(8):1561-1569.
8 Strittmatter E F , Lemoff A S , Williams E R . Structure of cationized glycine,Gly?M2+(M=Be,Mg,Ca,Sr,Ba),in the gas phase:intrinsic effect of cation size on zwitterion stability. The Journal of Physical Chemistry A,2000,104(43):9793-9796.
9 Xu M , Dou X , Bu Y ,et al . Density functional theory calculations for the microsolvation of M3+–zwitterionic glycine complexes (M3+=Al3+,Ga3+,In3+). Chemical Physics Letters,2012,537:101-106.
10 Constantino E , Rodr?′guez?Santiago L , Sodupe M ,et al . Interaction of Co+ and Co2+ with glycine. A theoretical study. Journal of Physical Chemistry A,2005,109 (1) :224-230.
11 Ai H , Bu Y , Li P ,et al . Geometry and binding properties of different multiple?state glycine–Fe+/Fe2+ complexes. Journal of Physical Organic Chemistry,2005,18 (1) :26-34.
12 Remko M , Rode B M . Effect of metal ions (Li+,Na+,K+,Mg2+,Ca2+,Ni2+Cu2+ and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine Journal of Physical Chemistry A 2006,110(5):1960-1967.
13 Khodabandeha M H , Davaria M D , Zahedia M ,et al . Complexation of glycine by manganese (II) in the gas phase:a theoretical study. International Journal of Mass Spectrometry,2010,291(1-2) :73-83.
14 Zhang Q , Meng X . The mechanisms of α?H and proton transfers of glycine induced by Mg2+. Journal of Theoretical and Computational Chemistry,2015,14(2):1550008(1-14).
15 庞瑞 .氨基酸以及氨基酸络合物结构与性质的第一性原理研究.博士学位论文.合肥:中国科学技术大学,2013.
Pang R . First principle investiga?tions on structures and properties of amino acids and amino acid complexes. Hefei:University of Science and Technology of China,2013.
16 孙涛,王一波 . 用GGA密度泛函及其长程色散校正方法计算各类氢键的结合能. 物理化学学报,2011,27:2553-2558.
Sun T , Wang Y B . Calculation of the binding energies of different types of hydrogen bonds using GGA density functional and its long?range. Acta Physico?Chimica Sinica,2011,27:2553-2558.
17 Lu T , Chen F . Multiwfn:a multifunctional wavefunction analyzer. Journal of Computational Chemistry,2012,33:580-592.
18 Yang G , Zhu R , Zhou L , Liu C . Interactions of Zn(II) with single and multiple amino acids. Insights from density functional and ab initio calculations. Journal of Mass Spectrometry,2012, 47(10):1372-1383.
[1] 杨鑫, 施虹, 王平心, 徐刚. 基于稳定性的三支聚类[J]. 南京大学学报(自然科学版), 2019, 55(4): 546-552.
[2] 汪 勇,刘 瑾*,宋泽卓,白玉霞,王琼亚,祁长青,孙少锐. 高分子稳定剂加固河道边坡表层砂土室内试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1095-1104.
[3]  孟祥军*,石 瑾,赵红丽,李亚文.  锌(Ⅱ)-甘氨酸-水三元配合物结构和性质的理论研究[J]. 南京大学学报(自然科学版), 2018, 54(1): 212-.
[4] 林 巨1* ,赵 越1,王 欢1,陈 鹏2. 基于射线稳定性参数的声传播特性分析[J]. 南京大学学报(自然科学版), 2015, 51(6): 1223-1233.
[5]  高恒娟1﹡,丁贤荣1,葛小平1,康彦彦2,张婷婷1.  沿海滩涂稳定性的长系列遥感定量分析方法[J]. 南京大学学报(自然科学版), 2014, 50(5): 585-592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[2] 阚 威, 李 云. 基于LSTM的脑电情绪识别模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 110 -116 .
[3] 李 巍, 王 鸥, 刚毅凝, 周杨浩, 郝跃冬. 一种自动读取指针式仪表读数的方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 117 -124 .
[4] 狄 岚, 何锐波, 梁久祯. 基于可能性聚类和卷积神经网络的道路交通标识识别算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 238 -250 .
[5] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440 -448 .
[6] 马娜, 范敏, 李金海. 复杂网络下的概念认知学习[J]. 南京大学学报(自然科学版), 2019, 55(4): 609 -623 .
[7] 郭英杰, 胡峰, 于洪, 张红亮. 基于时间粒的铝电解过热度预测模型[J]. 南京大学学报(自然科学版), 2019, 55(4): 624 -632 .
[8] 王文琪, 王栋, 王远坤. 长江三角洲太湖流域湖西浙西区降水极值特性分析[J]. 南京大学学报(自然科学版), 2019, 55(4): 688 -698 .
[9] 李泰安,张为,林建烽,郝东宁. 一种基于有源真时延的低复杂度波束形成器设计[J]. 南京大学学报(自然科学版), 2019, 55(5): 750 -757 .
[10] 韩海阳,贾龙飞,李歌,张豹山,唐东明,杨燚. 嵌套斯格明子的自旋动力势效应研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 774 -780 .