南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 825–831.doi: 10.13232/j.cnki.jnju.2019.05.016

• • 上一篇    下一篇

交联型聚氨酯阻尼材料性能研究

朱聪,杜瑞春,张秋红,赵祝萱,李维智(),贾叙东()   

  1. 南京大学化学化工学院,南京,210023
  • 收稿日期:2019-07-02 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 李维智,贾叙东 E-mail:liweizhi@nju.edu.cn
  • 基金资助:
    国家自然科学基金(21875102)

Study on the damping properties of cross⁃linking polyurethanes

Cong Zhu,Ruichun Du,Qiuhong Zhang,Zhuxuan Zhao,Weizhi Li(),Xudong Jia()   

  1. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing,210023, China
  • Received:2019-07-02 Online:2019-09-30 Published:2019-11-01
  • Contact: Weizhi Li,Xudong Jia E-mail:liweizhi@nju.edu.cn

摘要:

采用两步法合成了一系列聚醚型聚氨酯,其中异氰酸酯和聚醚多元醇当量比为1.6~2.3.利用动态热机械分析仪(Dynamic Thermomechanical Analysis,DMA)测试其动态力学性能,研究了异氰酸酯官能度、聚醚多元醇官能度以及扩链剂官能度对聚氨酯材料阻尼性能的影响.结果表明,引入多官能度异氰酸酯能改变聚氨酯材料的tA(tanδ Area),多官能度异氰酸酯(PAPI)取代双官能度异氰酸酯(TDI),T g处损耗因子存在最高值,且tA随PAPI取代越多逐步降低.增加PAPI和扩链剂1,4?丁二醇,Tg 处损耗因子整体呈下降趋势,tA存在最大值,且损耗因子最高为1.36(10 Hz).提高聚醚多元醇的平均官能度可以有效改善聚氨酯材料的阻尼性能,Mn =3000D的聚氧化丙烯三醇(GP330)和Mn =2000D的聚氧化丙烯二醇(PPG2000)摩尔比为1∶1时,损耗因子(T=T g)最高;添加丙三醇会降低材料损耗因子(T=T g).损耗模量随GP330增加而增加,随丙三醇增加而增加(T>T g).

关键词: 聚氨酯, 交 联, 阻尼材料, 动态力学分析

Abstract:

A series of polyurethanes were prepared from isocyanates and polyether polyols with an equivalent ratio of 1.6~2.3 by a two?step method. Their dynamic mechanical properties were tested by dynamic thermomechanical analyzer (DMA). The effects of isocyanate functionality,polyol functionality and chain extender functionality on the damping properties for polyurethane materials were also discussed. The results showed that the addition of multi?functional isocyanate could change the tA(tanδ Area)of the polyurethane. When PAPI replaced bifunctional isocyanate TDI partly,the loss factor of damping materials at T g had the highest value,and the tA gradually decreased. If PAPI and 1,4?butylene glycol were increased,the loss factor at Tg decreased on the whole,and there was a maximum value of tA. The highest loss factor was up to 1.36(10 Hz). Meanwhile,improving the average functionality of the polyether polyols could effectively improve the damping properties of polyurethanes. When the molar ratio of polyoxypropylene triol (GP330,Mn =3000D) and polypropylene glycol oxide (PPG2000,Mn =2000D) was 1∶1,the damping properties were the best. The loss factor(T=T g) had the highest value. However,adding multi?functional chain extender would reduce the loss factor. The loss modulus was increased with the addition of GP330 and glycerol(above glass temperature).

Key words: polyurethane, crosslinking, damping material, dynamic mechanical analysis

中图分类号: 

  • TQ323.8

图1

阻尼材料多元交联阻尼示意图"

表1

不同TDI含量聚氨酯组成和性能"

Sample TDI(mol) PAPI(mol) BDO(mol) tanδ max tA (K) ρ(mol?m-3)
PU?1 7.88 1.57 8 1.28 63.93 369
PU?2 7.47 1.87 8 1.25 60.65 449
PU?3 8.29 1.27 8 1.23 66.85 408

表2

不同PAPI和BDO含量聚氨酯组成和性能"

Sample TDI(mol) PAPI(mol) BDO(mol) tanδ max tA(K) ρ(mol?m-3)
PU?1 7.88 1.57 8.00 1.28 63.93 369
PU?4 7.88 0.44 5.56 1.36 62.99 461
PU?5 7.88 2.52 10.05 1.18 57.90 478

图2

不同TDI含量对tanδ (a)和损耗模量(b)的影响"

图3

不同PAPI和BDO含量对tanδ (a)和损耗模量(b)的影响"

表3

不同官能度聚醚多元醇含量聚氨酯组成和性能"

Sample PPG2000 (mol) GP330 (mol) BDO (mol) tanδ max tA (K) ρ (mol?m-3)
PU?1 2 2 8 1.28 63.93 369
PU?6 2.25 1.833 8 1.22 61.77 787
PU?7 1.75 2.167 8 1.18 59.40 797

图4

不同官能度聚醚多元醇对tanδ(a)和损耗模量(b)的影响"

表4

不同官能度扩链剂聚氨酯组成和性能"

Sample BDO(mol) Gl(mol) tanδ max tA(K) ρ(mol?m-3)
PU?4 5.44 0 1.36 62.99 461
PU?8 2.72 1.81 1.25 57.90 864

图5

不同官能度扩链剂对tanδ(a)和损耗模量(b)的影响"

1 Corsaro R D , Sperling L H . Sound and vibration damping with polymers. Washington DC: American Chemical Society,1990,5-22.
2 Corsaro R D , Sperling L H . Sound and vibration damping with polymers. Washington DC: American Chemical Society,1990,359-365.
3 Li Y Q , Jiao H Y , Pan G Q ,et al . Mechanical and damping properties of carbon nanotube?modified polyisobutylene?based polyurethane composites. Journal of Composite Materials,2016,50(7):929-936.
4 Wang C , Jia J R . Damping and mechanical properties of polyol cross?linked polyurethane/epoxy interpenetrating polymer networks. High Performance Polymers,2014,26(2):240-244.
5 Xu K , Chen R , Wang C S ,et al . Organomont?morillonite?modified soybean oil?based polyure?thane/epoxy resin interpenetrating polymer networks (IPNs). Journal of Thermal Analysis and Calorimetry,2016,126(3):1253-1260.
6 Zhang C M , Chen Y J , Li H ,et al . Facile fabrication of polyurethane/epoxy IPNs filled graphene aerogel with improved damping,thermal and mechanical properties. RSC Advances,2018, 8(48):27390-27399.
7 Chen S B , Wang Q H , Wang T M . Hydroxy?terminated liquid nitrile rubber modified castor oil based polyurethane/epoxy IPN composites: Damping,thermal and mechanical properties. Polymer Testing,2011,30(7):726-731.
8 Mathew A , Kurmvanshi S , Mohanty S ,et al . Mechanical behavior of castor?oil?based advanced polyurethane functionalized with glycidol and siloxanes. JOM,2017,69(12):2501-2507.
9 Roudsari G M , Mohanty A K , Misra M . Exploring the effect of poly (propylene carbonate) polyol in a biobased epoxy interpenetrating network. ACS Omega,2017,2(2):611-617.
10 Yu M , Qi S , Fu J ,et al . A high?damping magnetor?heological elastomer with bi?directional magnetic?control modulus for potential application in seismology. Applied Physics Letters,2015,107(11):111901.
11 Lv X S , Huang Z X , Shi M X ,et al . Composition distribution,damping and thermal properties of the thickness continuous gradient epoxy/polyurethane interpenetrating polymer networks. Applied Sciences,2017,7(2):135.
12 Yu M , Qi S , Fu J ,et al . Preparation and characterization of a novel magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Smart Materials and Structures,2015,24(4):045009.
13 Natterodt J C , Meesorn W , Zoppe J O ,et al . Functionally graded polyurethane/cellulose nano?crystal composites. Macromolecular Materials and Engineering,2018,303(6):1700661.
14 Feng Y , Zhou H J , Zhang X L ,et al . Preparation and characterization of polyurethane damping materials derived from mixed?base prepolymers containing numerous side methyls. e?Polymers,2015,15(5):323-327.
15 王宝柱,黄微波,黄宝琛 等 . 聚醚型聚氨酯的阻尼性能. 合成橡胶工业,2004,27(5):309-313.
Wang B Z , Huang W B , Huang B C ,et al . Damping properties of polyether?based polyure?thanes. China Synthetic Rubber Industry,2004,27(5):309-313.
16 黄微波,刘东晖,杨宇润 . 多功能阻尼涂料层. CN93107379.0.
17 Chang M C O , Thomas D A , Sperling L H . Characterization of the area under loss modulus and tanδ?temperature curves:Acrylic polymers and their sequential interpenetrating polymer networks. Journal of Applied Polymer Science,1987,34(1):409-422.
18 童彬 . 聚合物交联密度定性和定量表征的讨论. 高分子通报,2015(12):112-115.
Tong B . Disscusion on qualitative and quantitative charac?terization of polymer crosslinking density. Polymer Bulletin,2015(12):112-115.
[1]  王伟平,郑 植,李 磊*.  聚环氧离子液体型聚氨酯膜渗透汽化分离丁醇水溶液的研究[J]. 南京大学学报(自然科学版), 2018, 54(1): 205-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420 -428 .
[2] 李同军,于洋,吴伟志,顾沈明. 经典粗糙近似的一个公理化刻画[J]. 南京大学学报(自然科学版), 2020, 56(4): 445 -451 .