南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 774–780.doi: 10.13232/j.cnki.jnju.2019.05.009

• • 上一篇    下一篇

嵌套斯格明子的自旋动力势效应研究

韩海阳,贾龙飞,李歌,张豹山,唐东明,杨燚()   

  1. 南京大学电子科学与工程学院,南京,210023
  • 收稿日期:2019-04-04 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 杨燚 E-mail:malab@nju.edu.cn
  • 基金资助:
    国家自然科学基金(11004095)

Research on spin motive force of skyrmionium

Haiyang Han,Longfei Jia,Ge Li,Baoshan Zhang,Dongming Tang,Yi Yang()   

  1. School of Electronic Science and Engineering,Nanjing University,Nanjing,210023, China
  • Received:2019-04-04 Online:2019-09-30 Published:2019-11-01
  • Contact: Yi Yang E-mail:malab@nju.edu.cn

摘要:

磁性斯格明子(Skyrmion)是具有拓扑保护的涡旋磁结构,在实空间拥有非平庸拓扑特性,被认为是未来自旋电子器件的理想信息载体,关于斯格明子性质和应用的研究是目前学术界的热点.嵌套斯格明子(Skyrmionium)是一种特殊的磁性斯格明子结构,是由拓扑荷相反的两个斯格明子内外嵌套而成,具有总斯格明子数为零的特点,可以避免斯格明子霍尔效应.采用数值方法研究了纳米圆盘中嵌套斯格明子的自旋动力势效应,其在面内微波磁场激励下的旋转振荡模可以在纳米盘边缘产生显著的自旋相关电场.相比于传统的磁性斯格明子,嵌套斯格明子的集体振荡模式更加复杂,自旋相关电场源于拓扑荷为正区域、为负区域以及边缘区域集体贡献.嵌套斯格明子的集体振荡在纳米盘边缘产生的电压振幅达到了微伏量级,远大于传统磁性斯格明子产生的电压,便于直接测量.该工作对于基础物理和应用研究均有积极意义.

关键词: 嵌套斯格明子, 微磁学, 自旋动力势, 自旋电池, 自旋电子学

Abstract:

Magnetic skyrmion is a type of magnetic vortex structure with topological protection and has non?trivial topological properties in real space. It is considered an ideal information carrier for future spintronics devices. The researches on properties and applications of magnetic skyrmion have become the current academic hotspots in recent years. Skyrmionium is a special magnetic texture,which is constructed based on two skyrmions with the opposite topological charge in a nesting way. So the topological charge of skyrmionium is zero,and it can successfully avoid the influence of skyrmion Hall effect,exhibiting better performance of dynamics. We numerically investigate the spin motive force (SMF) of skyrmionium on a nanodisk in this paper. The rotational oscillating mode excited by an in?plane microwave magnetic field can produce a significant spin?dependent electric field at the edge of the nanodisk. Compared with the traditional magnetic skyrmion,the collective oscillation modes of skyrmionium are more complicated,and the spin?dependent electric fields originating from oscillations have three sources,i.e.,the contribution from the regions with positive topological charge,the regions with negative topological charge and the edge regions,respectively. The amplitude of voltage generated at the edge of the nanodisk reaches the order of microvolt,which is much larger than the voltage generated by the traditional magnetic skyrmion. The phenomenon makes it convenient to measure the voltage directly in a regular way. Accordingly,The skyrmionium could be a good candidate for the future spin battery. The research is valuable for the fundamental physics and future application research.

Key words: skyrmionium, micromagnetics, spin motive force, spin battery, spintronics

中图分类号: 

  • TP333

图1

斯格明子和嵌套斯格明子的磁矩分布"

图 2

计算模型示意图"

图3

不同频率磁导率的虚部,插图为磁矩随时间的变化"

图 4

Skyrmionium的拓扑电荷密度分布示意图"

图 5

不同频率,电场x分量在一个周期的变化示意图"

图 6

低频(a)和高频(b)两种情况,计算得到的AB两端电压"

1 HagemeisterJ,RommingN,Von BergmannK,et al. Stability of single skyrmionic bits. Nature Communications,2015,6:8455.
2 ZhouY,IacoccaE,AwadA A,et al. Dynamically stabilized magnetic skyrmions. Nature Communi?cations,2015,6:8193.
3 MartiX,FinaI,FronteraC,et al. Room?temperature antiferromagnetic memory resistor. Nature Materials,2014,13(4):367-374.
4 KangW,HuangY Q,ZhangX C,et al. Skyrmion?electronics:an overview and outlook. Proceedings of the IEEE,2016,104(10):2040-2061.
5 MühlbauerS,BinzB,JonietzF,et al. Skyrmion lattice in a chiral magnet. Science,2009,915(5916):915-919.
6 HuangY Q,KangW,ZhangX C,et al. Magnetic skyrmion?based synaptic devices. Nanotech?nology,2017,28(8):08LT02.
7 FertA,CrosV,SampaioJ. Skyrmions on the track. Nature Nanotechnology,2013,8(3):152-156.
8 ZhangX C,EzawaM,ZhouY. Magnetic skyrmion logic gates:conversion,duplication and merging of skyrmions. Scientific Reports,2015,5:9400.
9 梁雪,赵莉,邱雷等. 磁性斯格明子的赛道存储. 物理学报,2018,67(13):137510.
LiangX,ZhaoL,QiuL,et al. Skyrmions?based magnetic racetrack memory. Acta Physica Sinica,2018,67(13):137510.
10 董博闻,张静言,彭丽聪等. 磁性斯格明子的多场调控研究. 物理学报,2018,67(13):137507.
DongB W,ZhangJ Y,PengL C,et al. Multi?field control on magnetic skyrmions. Acta Physica Sinica,2018,67(13):137507.
11 刘艺舟,臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报,2018,67(13):131201.
LiuY Z,ZhangJ D. Overview and outlook of magnetic skyrmions. Acta Physica Sinica,2018,67(13):131201.
12 VolovikG E. Linear momentum in ferromagnets. Journal of Physics C:Solid State Physics,1987,20(7):L83-L87.
13 YangS A,BeachG S,KnutsonC,et al. Universal electromotive force induced by domain wall motion. Physical Review Letters,2009,102(6):067201.
14 HaiP N,OhyaS,TanakaM,et al. Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature,2009,458(7237):489-492.
15 BarnesS E,MaekawaS. Generalization of Faraday’s Law to Include Nonconservative Spin Forces. Physical Review Letters,2007,98(24):246601.
16 Everschor?SitteK,SitteM. Real?space berry phases:skyrmion soccer (invited). Journal of Applied Physics,2014,115(17):172602.
17 SchulzT,RitzR,BauerA,et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nature Physics,2012,8(4):301-304.
18 IwasakiJ,MochizukiM,NagaosaN. Universal current?velocity relation of skyrmion motion in chiral magnets. Nature Communications,2013,4:1463.
19 MoncheskyT L,LoudonJ C,RobertsonM D,et al. Comment on “robust formation of skyrmions and topological hall effect anomaly in epitaxial thin films of MnSi”. Physical Review Letters,2014,112(5):059701.
20 ZangJ D,MostovoyM,HanJ H,et al. Dynamics of skyrmion crystals in metallic thin films. Physical Review Letters,2011,107(13):136804.
21 OheJ I,ShimadaY. Cascaded spin motive force driven by the dynamics of the skyrmion lattice. Applied Physics Letters,2013,103(24):242403.
22 ShenM K,ZhangY,Ou?YangJ,et al. Motion of a skyrmionium driven by spin wave. Applied Physics Letters,2018,112(6):62403.
23 ZhangX C,XiaJ,ZhouY,et al. Control and manipulation of a magnetic skyrmionium in nanostructures. Physical Review B,2016,94(9):094420.
24 KomineasS,PapanicolaouN P. Skyrmion dynamics in chiral ferromagnets under spin?transfer torque. Physical Review B,2015,92(7):174405.
25 KolesnikovA G,StebliyM E,SamardakA S,et al. Skyrmionium–high velocity without the skyrmion Hall effect. Scientific Reports,2018,8:16966.
26 ZhangS L,KronastF,Van Der LaanG,et al. Real?space observation of skyrmionium in a ferro?magnet?magnetic topological insulator hetero?structure. Nano Letters,2018,18(2):1057-1063.
27 LiS,XiaJ,ZhangX C,et al. Dynamics of a magnetic skyrmionium driven by spin waves. Applied Physics Letters,2018,112(14):142404.
28 SampaioJ,CrosV,RohartS,et al. Nucleation,stability and current?induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotechnology,2013,8(11):839-844.
29 NagaosaN,TokuraY. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech?nology,2013,8(12):899-911.
30 BüttnerF,LemeshI,SchneiderM,et al. Field?free deterministic ultrafast creation of magnetic skyrmions by spin?orbit torques. Nature Nanotech?nology,2017,12(11):1040-1044.
31 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报,2018,67(13):137506.
KongL Y. Research progress on topological properties and micro?magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica,2018,67(13):137506.
32 OheJ I,ShimadaY. Cascaded spin motive force driven by the dynamics of the skyrmion lattice. Applied Physics Letters,2013,103(24):242403.
33 TanabeK,ChibaD,OheJ,et al. Spin?motive force due to a gyrating magnetic vortex. Nature Communications,2012,3:845.
34 NovosadV,FradinF Y,RoyP E,et al. Magnetic vortex resonance in patterned ferromagnetic dots. Physical Review B,2005,72(2):24455.
35 FertA,ReyrenN,CrosV. Magnetic skyrmions:advances in physics and potential applications. Nature Reviews Materials,2017,2(7):17031.
36 ShimadaY,OheJ I. Spin motive force driven by skyrmion dynamics in magnetic nanodisks. Physical Review B,2015,91(17):174437.
[1] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[3] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[4] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[5] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[6] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[7] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[8] 秦 娅, 申国伟, 赵文波, 陈艳平. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 29 -40 .
[9] 陆慎涛, 葛洪伟, 周 竞. 自动确定聚类中心的移动时间势能聚类算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 143 -153 .
[10] 仲昭朝, 邹 婷, 唐惠炜, 庄 重, 张 臻. 铜胁迫对蚕豆根尖细胞凋亡及线粒体功能的影响[J]. 南京大学学报(自然科学版), 2019, 55(1): 154 -160 .