南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 750–757.doi: 10.13232/j.cnki.jnju.2019.05.006

• • 上一篇    下一篇

一种基于有源真时延的低复杂度波束形成器设计

李泰安,张为(),林建烽,郝东宁   

  1. 天津大学微电子学院,天津,300072
  • 收稿日期:2019-05-18 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 张为 E-mail:tjuzhangwei@tju.edu.cn
  • 基金资助:
    国家重点研发计划(2016YFE0100400)

Design of a low⁃complexity beamformer based on active true⁃time delay

Taian Li,Wei Zhang(),Jianfeng Lin,Dongning Hao   

  1. School of Microelectronics,Tianjin University,Tianjin,300072,China
  • Received:2019-05-18 Online:2019-09-30 Published:2019-11-01
  • Contact: Wei Zhang E-mail:tjuzhangwei@tju.edu.cn

摘要:

基于0.18 μm BiCMOS工艺,实现一种基于有源真时延技术的低复杂度波束形成架构设计.该波束形成架构适用于多路输出的宽带多天线系统,能够将输入到阵列中的信号进行空间滤波处理,抑制噪声和干扰,增强有用信号.相比于传统的波束形成架构,该架构通过真时延单元共享,实现了低复杂度(更少的延时单元数量),并采用改进的有源真时延单元,在保证稳定延时的同时,有效降低了芯片面积,相比同样功能的无源结构实现方案,面积节省了近80%.仿真结果表明,在0.3 G~1 GHz频带内,波束形成芯片能够同时实现对空间中四个不同方向的信号合成,最小延时分辨率是103 ps,最大延时是1030 ps,延时波动小于2.4%,电源电压为1.8 V,输入、输出端口回波损耗小于-13.8 dB,带内合成增益为25 dB,版图面积为3.8 mm2.

关键词: 低复杂度, 有源真时延单元, 波束形成, 群延时, 超宽带

Abstract:

Based on 0.18 μm BiCMOS technology,a low?complexity beamformer architecture using active true time delay(TTD) was designed. The beamformer architecture is suitable for broadband multi?antenna system with multiple outputs,which can spatially filter the input signals into the array,suppress noise and interference,and enhance useful signals. Compared with the traditional beamformer architecture,this architecture achieves low complexity (less number of delay units) by sharing true?time delay units,and uses improved active true?time delay units to ensure stable delay while effectively reducing chip area. Compared with the passive structure implementation scheme with the same function,the area is saved by nearly 80%. The simulation results show that in the range of 0.3 G to 1 GHz,the beamformer can simultaneously synthesize signals in four different directions in space. The minimum delay resolution is 103 ps,the maximum delay is 1030 ps,and the delay variation is less than 2.4%. Under 1.8 V supply voltage,the return loss of the input and output ports is less than -13.8 dB,the in?band synthesis gain is 25 dB,and the chip area is 3.8 mm2.

Key words: low?complexity, active true?time delay unit, beamformer, group delay, ultra wide band

中图分类号: 

  • TN432

图1

真时延多波束天线阵列接收器"

图2

本文提出的基于有源真时延的波束形成架构"

图3

波束形成架构信号流向图"

图4

差分低噪声放大器结构原理图"

图5

Gm?C有源滤波器原理图"

图6

电阻R2对真时延单元增益的影响"

图7

加法器原理图"

图8

波束形成器版图"

图9

波束形成器总增益仿真结果"

图10

波束形成器S 11与S 22仿真结果"

图11

波束形成器群延时仿真结果"

图12

波束形成器方向性仿真结果(650 MHz和1000 MHz)"

表 1

本文与其他文献的性能对比"

参数 文献[11] 文献[12] 文献[13] 文献[16] 本文
工艺 0.18 μm 0.13 μm 0.14 μm 0.13 μm 0.18 μm
带宽(GHz) 0.35~1 1~15 1~2.5 0.96~5.1 0.3~1
延时通道 4 4 4 4 4
输出端口个数 4 1 1 1 4
延时范围(ps) 0~720 0~225 0~550 0~82 0~1030
延时波动 N.A. *14% 2% N.A. 2.4%
增益(dB) 18.5 24 ~12 ~21 25
功耗(mW) 234 555 450 **30.6~52.5 396
面积(mm2) 19.995 9.92 1 N.A. 3.8
真时延技术 LC LC Gm?C Gm?C Gm?C
1 Ahmadi P , Taghavi M H , Belostotski L ,et al . 6?GHz all?pass?filter?based delay?and?sum beam?former in 130 nm CMOS∥2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). College Station,TX,USA:IEEE,2014:837-840.
2 Ariyarathna V , Udayanga N , Madanayake A ,et al . Design methodology of an analog 9?beam squint?free wideband IF multi?beamformer for mmW applications∥2017 Moratuwa Engineering Research Conference. Moratuwa,Sri Lanka:IEEE,2017: 236.
3 Moallemi S , Welker R , Kitchen J . Wide band programmable true time delay block for phased array antenna applications∥2016 IEEE Dallas Circuits and Systems Conference. Arlington,TX,USA:IEEE,2016:1-4.
4 Chu T S , Hashemi H . A true time?delay?based bandpass multi?beam array at mm?waves supporting instantaneously wide bandwidths∥ 2010 IEEE International Solid?State Circuits Conference. San Francisco,CA,USA:IEEE,2010:38-39.
5 Park S , Jeon S . A 15~40 GHz CMOS True?time delay circuit for UWB multi?antenna systems. IEEE Microwave and Wireless Components Letters,2013,23(3):149-151.
6 Rangan S , Rappaport T S , Erkip E . Millimeter?wave cellular wireless networks: potentials and challenges. Proceedings of the IEEE,2014,102(3):366-385.
7 Kang D W , Koh K J , Rebeiz G M . A Ku?band two?antenna four?simultaneous beams SiGe BiCMOS phased array receiver. IEEE Transactions on Microwave Theory and Techniques,2010,58(4):771-780.
8 Chu T S , Hashemi H . True?time?delay?based multi?beam arrays. IEEE Transactions on Microwave Theory and Techniques,2013,61(8):3072-3082.
9 Djerafi T , Fonseca N J G , Wu K . Broadband substrate integrated waveguide 4×4 nolen matrix based on coupler delay compensation. IEEE Transactions on Microwave Theory and Techniques,2011,59(7):1740-1745.
10 龚建强,褚庆昕 . 一种新型SCRLH传输线结构的设计与分析. 华南理工大学学报(自然科学版),2009,37(9):52-56.
Gong J Q , Chu Q X . Design and analysis of a novel SCRLH transmission line structure. Journal of South China University of Technology (Natural Science Edition),2009,37(9):52-56.
11 Liu Y Z , Zhang W , Liu Y Y . A fully integrated 4?channel beamformer based on TTD phased array in 0.18 μm CMOS. Microelectronics Journal,2018,80:81-86.
12 Chu T S , Roderick J , Hashemi H . An integrated ultra?wideband timed array receiver in 013 μm CMOS using a path?sharing true time delay architecture. .IEEE Journal of Solid?State Circuits,2007,42(12):2834-2850.
13 Garakoui S K , Klumperink E A M , Nauta B ,et al . Compact cascadable gm?C all?pass true time delay cell with reduced delay variation over frequency. IEEE Journal of Solid?State Circuits,2015,50(3):693-703.
14 Garakoui S K , Klumperink E A M , Nauta B ,et al . A 1?to?2.5GHz phased?array IC based on gm?RC all?pass time?delay cells∥2012 IEEE International Solid?State Circuits Conference.San Francisco,CA,USA:IEEE,2012:80-82.
15 Li M , Wang Z G , Xu J ,et al . A 500 kHz~1.4GHz push?pull differential noise cancellation LNA∥2015 IEEE International Conference on Communication Software and Networks.Chengdu,China:IEEE,2015:182-185.
16 Ahmadi P , Belostotski L , Madanayake A ,et al . 0.96 ?to? 5.1 GHz 4?element spatially analog IIR?enhanced delay?and?sum beamformer∥2017 IEEE MTT?S International Microwave Symposium. Honololu,HI,USA:IEEE,2017:1610-1613.
[1] 付留芳1,2*,赵国君3,章新华1,窦平轩2,李鹏1. 一种基于MVDR-MMP的水面干扰抑制方法[J]. 南京大学学报(自然科学版), 2015, 51(7): 50-.
[2] 张智伟1*,王福勋2,赵 昕1,庄 桥3. 两种菊头蝠超声发射特性与鼻叶形态的相关性[J]. 南京大学学报(自然科学版), 2015, 51(7): 139-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 玫,张 森,聂培尧,聂秀山. 基于朴素贝叶斯的网络查询日志session划分方法研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1132 -1140 .
[2] 阚 威, 李 云. 基于LSTM的脑电情绪识别模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 110 -116 .
[3] 顾思云,何其慧,王溢华,田万成,刘志勇,胡柏星. 工业废水与半焦配煤制浆研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 859 -868 .
[4] 郭小松,赵红丽,贾俊芳,杨静,孟祥军. 密度泛函理论方法研究第一系列过渡金属对甘氨酸的配位能力[J]. 南京大学学报(自然科学版), 2019, 55(6): 1040 -1046 .
[5] 李勤,陆现彩,张立虎,程永贤,刘鑫. 蒙脱石层间阳离子交换的分子模拟[J]. 南京大学学报(自然科学版), 2019, 55(6): 879 -887 .
[6] 张银芳,于洪,王国胤,谢永芳. 一种用于数据流自适应分类的主动学习方法[J]. 南京大学学报(自然科学版), 2020, 56(1): 67 -73 .
[7] 袁友宏,刘欣,鲍蕾. 求解非凸截断L 1⁃SVM的多阶段非精确线搜割平面方法[J]. 南京大学学报(自然科学版), 2020, 56(1): 98 -106 .
[8] 秦洋,姚素平,萧汉敏. 致密砂岩储层孔⁃喉连通性研究[J]. 南京大学学报(自然科学版), 2020, 56(3): 338 -353 .
[9] 李同军,于洋,吴伟志,顾沈明. 经典粗糙近似的一个公理化刻画[J]. 南京大学学报(自然科学版), 2020, 56(4): 445 -451 .