南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (4): 624–632.doi: 10.13232/j.cnki.jnju.2019.04.012

• • 上一篇    下一篇

基于时间粒的铝电解过热度预测模型

郭英杰1(),胡峰1,于洪1,张红亮2   

  1. 1. 计算智能重庆市重点实验室,重庆邮电大学,重庆,400065
    2. 中南大学冶金与环境学院,长沙,410083
  • 收稿日期:2019-05-21 出版日期:2019-07-30 发布日期:2019-07-23
  • 通讯作者: 郭英杰 E-mail:281787765@qq.com
  • 基金资助:
    国家自然科学基金(61533020,61876027,61751312)

Prediction model of superheat in aluminum electrolysis based on time granularity

Yingjie Guo1(),Feng Hu1,Hong Yu1,Hongliang Zhang2   

  1. 1. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of;Posts and Telecommunications, Chongqing, 400065, China
    2. School of Metallurgy and Environment, Central South University, Changsha, 410083, China
  • Received:2019-05-21 Online:2019-07-30 Published:2019-07-23
  • Contact: Yingjie Guo E-mail:281787765@qq.com

摘要:

过热度是铝电解生产过程中的一项重要参数,将过热度保持在适当的范围内可以提高电流效率,减小电解槽损耗,但是过热度测量难度较大且测量过程复杂.因此,基于粒计算理论,提出一种基于时间粒的过热度预测模型.通过在时间序列上构建时间粒,结合时间粒构建新的特征集与样本集,在此基础上,利用分类器对新的样本集进行训练,得到模型.采用山东魏桥铝电有限公司的铝电解生产数据进行实验,结果表明,该方法在预测过热度上较已有模型的预测能力有较大提升.

关键词: 过热度, 粒计算, 时间序列, 铝电解

Abstract:

Superheat is an important parameter in the process of aluminum electrolysis. Keeping the superheat within an appropriate range can improve the current efficiency and reduce cell loss. However,the measurement of superheat is difficult and the measurement process is complex. According to granular computing theory,this paper proposes a prediction model of superheat based on time granule. By constructing time granules on time series,new feature sets and sample sets are constructed combinating with time granules. On this basis,new sample sets are trained by the classifier to obtain the model. In this paper,we use the data of aluminum electrolysis production from Shandong Weiqiao Aluminum and Electricity Ltd to test the experiment. The result shows that the supreheat prediction of this method is better than the existing models.

Key words: superheat, granular computing, time series, aluminum electrolysis

中图分类号: 

  • TP391

图1

模型构建流程图"

表1

铝电解数据集基本信息"

属性样本数测量频率(每槽每天)取值范围属性数量
生产数据13500万720条2015.10-2016.747
生产数据2655361条2015.10-2016.731

表2

选出的属性的取值范围"

属性取值范围
设定电压[4200,4290]
槽电流[4010,4200]
过滤电阻[4200,4400]
设定最高电压[4080,4480]
效应等待间隔[7200,57600]
摆 动[0,164]
总变化斜率[1820,2206]
实际下料间隔[463,1533]
硅含量[0.04,0.18]
电解质水平[24,33]
槽电压[4160,4320]
槽电阻[4250,4400]
平滑电阻[4300,4500]
设定最低电压[4000,4430]
针 振[0,347]
电阻变化斜率[1740,2169]
基准下料间隔[820,1140]
铁含量[0.02,0.16]
铝水平[19,23.5]
析出铝[2950,5600]

表3

样本特征及标签"

NcNmLabel

N1,N2,N3

N4,N5,N6

N7,N8label

表4

实验数据集基本信息"

Dataset样本数特征数测量日期类分布
5?aeData1306782015.11.6-2016.7.4868∶438
10?aeData2477782015.11.6-2016.7.41605∶872
30?aeData7606782015.11.6-2016.7.43948∶3658
50?aeData12362782015.11.6-2016.7.47307∶5055

表5

各个模型的Precision值对比"

DatasetPMBTG?RFPMBTG?XGBPMBTG?J48PMBTG?IBKRDNF?RFSMM
5?aeData0.79040.80020.70550.77350.55070.2353
10?aeData0.78060.79750.71710.77020.60300.3095
30?aeData0.79430.82040.73030.78010.66040.4063
50?aeData0.80860.81010.72350.79090.68030.6050

表6

各个模型的Recall值对比"

DatasetPMBTG?RFPMBTG?XGBPMBTG?J48PMBTG?IBKRDNF?RFSMM
5?aeData0.77350.80350.68460.74670.57060.4392
10?aeData0.76970.79040.69050.74030.60350.4227
30?aeData0.79400.82020.71070.76770.63070.4743
50?aeData0.80020.82380.71980.78030.67150.4856

表7

各个模型的F?Score值对比"

DatasetPMBTG?RFPMBTG?XGBPMBTG?J48PMBTG?IBKRDNF?RFSMM
5?aeData0.78190.80180.70520.75020.56050.3064
10?aeData0.77510.79390.69870.74330.60320.3573
30?aeData0.79410.81030.70990.77070.64520.4377
50?aeData0.80440.82690.72360.77990.67590.5388
1 裴海灵,周乃君,姜昌伟. 电解质过热度对铝电解槽物理场的影响. 湖南冶金,2005,33(1):12-16.
Pei H L,Zhou N J,Jiang C W.The influence of super heat on three field of aluminum reduction cells. Hunan Metallurgy,2005,33(1):12-16.
2 曹丹阳,曾水平,李晋宏. 铝电解质过热度预测模型研究. 轻金属,2010(10):35-38.
Cao D Y,Zeng S P,Li J H.Research on prediction model of aluminium electrolyte superheat degree. Light Metals,2010(10):35-38.
3 杨吉森. 一种铝电解过热度软测量预测模型. 中国自动化学会,济南市人民政府. 2017中国自动化大会(CAC2017)暨国际智能制造创新大会(CIMIC2017)论文集.中国自动化学会,济南市人民政府:中国自动化学会,2017:161-167.
Yang J S.Soft measuring model of superheat degree in the aluminum electrolysis productionChinese association of automation,Ji'nan Muni?cipal People's Government∥2017 Chinese Automation Congress(CAC2017) and Intelligent Manufacturing International Conference(CIMIC2017) Proceeding.Chinese Association of Automation,Ji'nan Municipal People's Govern?ment:Chinese Association of Automation,2017:161-167.
4 刘运胜. 基于相对密度噪声过滤随机森林的铝电解过热度预测. 中国自动化学会,济南市人民政府.2017中国自动化大会(CAC2017)暨国际智能制造创新大会(CIMIC2017)论文集.中国自动化学会、济南市人民政府:中国自动化学会,2017,324-329.
Liu Y S.Prediction of aluminum electrolysis superheat based on relative density noise filtering random forestChinese Association of Automation,Ji'nan Municipal People's Government∥2017 Chinese Automation Congress (CAC2017) & Intelligent Manufacturing Interna?tional Conference (CIMIC2017) Proceeding.Chinese Association of Automation,Ji'nan Municipal People's Government:Chinese Association of Automation,2017, 324-329).
5 邓伟辉. 时间序列的多粒度智能分析方法研究. 博士学位论文. 重庆:中国科学院大学(中国科学院重庆绿色智能技术研究院),2017.
Deng W H.Multi?granularity intelligent analyzing for time seriesPh.D. Dissertation. Chongqing:Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,2017.
6 BoxG E P,JenkinsG M. Time series analysis: forecasting and control. Journal of Time,2010,31(4):303-305.
7 YanW Z. Toward automatic time?series fore?casting using neural networks. IEEE Transactions on Neural Networks and Learning Systems,2012,23(7):1028-1039.
8 ChandraR. Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time?series prediction. IEEE Tran?sactions on Neural Networks and Learning Systems,2015,26(12):3123-3136.
9 MiranianA,AbdollahzadeM. Developing a local least?squares support vector machines?based neuro?fuzzy model for nonlinear and chaotic time series 0prediction. IEEE Transactions on Neural Networks and Learning Systems,2013,24(2):207-218.
10 ChenT T,LeeS J. A weighted LS?SVM based learning system for time series forecasting. Information Sciences,2015,299:99-116.
11 RistanoskiG,LiuW,BaileyJ. A time?dependent enhanced support vector machine for time series regression∥Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,NY,USA:ACM,2013,DOI:10.1145/2487575. 2487655.
doi: 10.1145/2487575. 2487655
12 LaboissiereL A,FernandesR A S,LageG G. Maximum and minimum stock price forecasting of Brazilian power distribution companies based on artificial neural networks. Applied Soft Computing,2015,35:66-74.
13 MooreR E,KearfottR B,CloudM J. Introduction to interval analysis. Philadelphia:Society for Industrial and Applied Mathematics,2009,235.
14 ZadehL A. Fuzzy sets. Information and Control,1965,8(3):338-353.
15 ZadehL A. Fuzzy algorithms. Information and Control,1968,12(2):94-102.
16 ZadehL A. Quantitative fuzzy semantics. Information Sciences,1971,3(2):159-176.
17 PawlakZ. Rough sets. International Journal of Computer & Information Sciences,1982,11(5):341-356.
18 PawlakZ,SkowronA. Rough sets:some extensions. Information Sciences,2007,177(1):28-40.
19 PedryczW. From fuzzy sets to shadowed sets:interpretation and computing. International Journal of Intelligent Systems,2009,24(1):48-61.
20 ChenT,GuestrinC. XGBoost:a scalable tree boosting system. Machine Learning,2016,ArXiv:1603.02754.
21 YenS J,LeeY S. Cluster?based under?sampling approaches for imbalanced data distributions. Expert Systems with Applications,2009,36(3):5718-5727.
22 AtallahD M,BadawyM,El?SayedA,et al. Predicting kidney transplantation outcome based on hybrid feature selection and KNN classifier. Multimedia Tools and Applications,2019(10):1-25.
23 SahuS,MehtreB M. Network intrusion detection system using J48 Decision Tree∥International Conference on Advances in Computing,Communications and Informatics. Kochi,India:IEEE,2015,DOI:10.1109/ICACCI.2015. 7275914.
doi: 10.1109/ICACCI.2015. 7275914
24 胡峰,王蕾,周耀. 基于三支决策的不平衡数据过采样方法. 电子学报,2018,46(1):135-144.
Hu F,Wang L,Zhou Y.An oversampling method for imbalance data based on three?way decision model. Acta Electronica Sinica,2018,46(1):135-144.
25 吴青华. 基于相对同步欧氏距离筛选的在线GPS轨迹数据压缩算法. 计算机应用与软件,2018,35(3):282-288.
Wu Q H.Online GPS Online gps trajectory data compression algorithm based on relative synchronous Euclidean distance filtering. Computer Applications and Software,2018,35(3):282-288.
[1] 吴静怡,吴钟强,商琳. 基于Shapelet的不相关情感子序列挖掘方法[J]. 南京大学学报(自然科学版), 2020, 56(1): 57-66.
[2]  方 宇1,闵 帆1*,刘忠慧1,杨 新2.  序贯三支决策的代价敏感分类方法[J]. 南京大学学报(自然科学版), 2018, 54(1): 148-.
[3] 顾沈明, 张 昊, 吴伟志, 谭安辉, . 多标记序决策系统中基于局部最优粒度的规则获取[J]. 南京大学学报(自然科学版), 2017, 53(6): 1012-.
[4] 杨 洁1,2,王国胤1*,庞紫玲1. 密度峰值聚类相关问题的研究[J]. 南京大学学报(自然科学版), 2017, 53(4): 791-.
[5] 李同军1,2*,吴伟志1,2,顾沈明1,2. 双论域上基于Brouwer-正交补的粗糙近似[J]. 南京大学学报(自然科学版), 2016, 52(5): 871-.
[6] 顾沈明1,2*,万雅虹1,2,吴伟志1,2,徐优红1,2. 多粒度决策系统的局部最优粒度选择[J]. 南京大学学报(自然科学版), 2016, 52(2): 280-.
[7] 马对霞*,祝 峰,林姿琼. 基于等价关系的粗糙拟阵的性质[J]. 南京大学学报(自然科学版), 2016, 52(2): 300-.
[8] 戴志聪,吴伟志*. 不完备多粒度序信息系统的粗糙近似

[J]. 南京大学学报(自然科学版), 2015, 51(2): 361-367.
[9]  谢 珺*,秦 琴,续欣莹.  全覆盖粒计算模型的粒化、知识逼近及其算子性质研究[J]. 南京大学学报(自然科学版), 2015, 51(1): 105-110.
[10] 韩忠明*,张 梦,李梦琪,莫 倩,刘 鹂. 有效的社会媒体热点话题传播模型研究[J]. 南京大学学报(自然科学版), 2015, 51(1): 187-196.
[11] 徐健锋1,2张远健1Duanning Zhou2,Dan Li 2,李宇1,. 基于粒计算的不确定性时间序列建模及其聚类[J]. 南京大学学报(自然科学版), 2014, 50(1): 86-.
[12]  顾沈明**,叶晓敏,吴伟志
.  多标记粒度不完备信息系统的粗糙近似*[J]. 南京大学学报(自然科学版), 2013, 49(2): 250-257.
[13]  何菌丹,王栋**
.  基于小波消噪与秩次集对分析的水文时间序列预测模型*
[J]. 南京大学学报(自然科学版), 2012, 48(6): 336-345.
[14]  据春华,帅朝谦**,封毅
.  基于粒计算的商业数据流概念漂移特征选择*[J]. 南京大学学报(自然科学版), 2011, 47(4): 391-397.
[15]  桑燕芳, 王 栋** , 吴吉春
.  水文序列噪声成分小波特性的揭示与描述*
[J]. 南京大学学报(自然科学版), 2010, 46(6): 643-653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[2] 董越男,吴兵党. 铁离子对紫外/乙酰丙酮法降解甲基橙的影响[J]. 南京大学学报(自然科学版), 2019, 55(3): 504 -510 .
[3] 郭小松,赵红丽,贾俊芳,杨静,孟祥军. 密度泛函理论方法研究第一系列过渡金属对甘氨酸的配位能力[J]. 南京大学学报(自然科学版), 2019, 55(6): 1040 -1046 .
[4] 张弘,申俊峰,董国臣,刘圣强,王冬丽,王伟清. 云南来利山锡矿锡石标型特征及其找矿意义[J]. 南京大学学报(自然科学版), 2019, 55(6): 888 -897 .
[5] 韩普,刘亦卓,李晓艳. 基于深度学习和多特征融合的中文电子病历实体识别研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 942 -951 .
[6] 刘显, 陈强路, 王小林, 丘靥, 杨源显. 方解石晶体定向性对水的拉曼光谱影响的实验评估[J]. 南京大学学报(自然科学版), 2020, 56(3): 297 -307 .
[7] 秦洋,姚素平,萧汉敏. 致密砂岩储层孔⁃喉连通性研究[J]. 南京大学学报(自然科学版), 2020, 56(3): 338 -353 .
[8] 梅志伟,王维东. 基于FPGA的卷积神经网络加速模块设计[J]. 南京大学学报(自然科学版), 2020, 56(4): 581 -590 .