南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (2): 291–300.doi: 10.13232/j.cnki.jnju.2019.02.014

• • 上一篇    下一篇

泥岩中的有机质对基于XRD的伊蒙混层结构计算的影响

巢 前1,蔡进功1*,李艳丽1,王国力2   

  1. 1.同济大学海洋地质国家重点实验室,上海,200092;2.中国石油化工股份有限公司科技部,北京,100029
  • 接受日期:2018-11-22 出版日期:2019-04-01 发布日期:2019-03-31
  • 通讯作者: 蔡进功 E-mail:jgcai@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(41672115),国家油气重大专项(2016ZX05006001-003)

The effect of organic matter on the calculation of structure details of illite/smectite in mudstones using XRD

Chao Qian1,Cai Jingong1*,Li Yanli1,Wang Guoli2   

  1. 1.State Key Laboratory of Marine Geology,Tongji University,Shanghai,200092,China 2.Department of Science and Technology,SINOPEC,Beijing,100029,China
  • Accepted:2018-11-22 Online:2019-04-01 Published:2019-03-31
  • Contact: Cai Jingong E-mail:jgcai@tongji.edu.cn

摘要: 选择富含有机质的泥岩样品,使用不同方法(过氧化氢、过硫酸钠)去除有机质后进行X射线衍射(X-Ray Diffraction,XRD)测试,探讨有机质的存在是否会影响利用XRD进行伊蒙混层矿物结构计算. 结果表明:使用过氧化氢去除有机质后得到的XRD图谱变化不大;使用过硫酸钠去除有机质后,XRD图谱中新出现15 (自然干燥片)和16.7 (乙二醇饱和片)衍射峰,且伊蒙混层的各特征衍射峰发生不同程度的偏移,经计算发现过硫酸钠处理后的样品中伊蒙混层的膨胀层比例(WEXP)远高于控制组(不去除有机质)和过氧化氢处理组. 这样的差异可能是因为赋存在蒙脱石层间的有机质使得层间域表现为疏水性,阻碍了水和乙二醇进入层间,故部分蒙脱石层在自然干燥和乙二醇饱和状态下膨胀不显著;过硫酸钠能去除蒙脱石层间的有机质,因而经过硫酸钠处理的蒙脱石膨胀性恢复.

关键词: XRD, 有机质, 伊蒙混层, 混层比, 结构计算

Abstract: We applied two organic matter removal methods to determine the effect of organic matter(OM)on the characterization and calculation of structural details of illite/smectite mixed layer mineral using XRD. A similar XRD pattern was observed between UT(untreated sample)and HT(OM removal with hydrogen peroxide(H2O2-30%)). In contrast,NT(OM removal with disodium peroxodisulfate(Na2S2O8))showed a different XRD pattern including peaks at 15 (AD,Air-dried) and 16.7 (EG,Ethylene glycol-saturated) which were not observed in the XRD patterns of UT and HT. In addition,after OM removal with Na2S2O8 treatment,the d001|001 and d002|003 peaks of I/S shifted to a higher 2-Theta angle and its d001|002 peak shifted to a lower angle,denoting an improved expandability both in AD and EG condition. A multi-specimen fitting model applied to their AD and EG patterns also suggested a much higher proportion of expandable layers after Na2S2O8 treatment. This inconsistency could be explained by the occurrence of interlayer OM in smectite layers rendering them hydrophobic,thus blocking the intercalation of water molecules and polar ethylene glycol molecules. This highly proscribes the expandability of parts of smectite layers in the AD and EG conditions and leads to an underestimate of the proportion of smectite layers in I/S. Our results clearly show that,compared to H2O2,Na2S2O8 could be more efficient in removing the inhibiting effect of interlayer OM on smectite expandability when exposed to water and polar organic molecules,which would guarantee a more precise characterization and calculation of structural details of I/S using XRD.

Key words: XRD, organic matter, illite/smectite, smectite layer in I/S, structure characterization

中图分类号: 

  • P575.5
[1] Hower J,Eslinger E V,Hower M E et al. Mechanism of burial metamorphism of argillaceous sediment:1. Mineralogical and chemical evidence. GSA Bulletin,1976,87(5):725-737.
[2] Altaner S P,Ylagan R F. Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals,1997,45(4):517-533.
[3] Lanson B,Sakharov B A,Claret F et al. Diagenetic smectite-to-illite transition in clay-rich sediments:A reappraisal of X-ray diffraction results using the multi-specimen method. American Journal of Science,2009,309(6):476-516.
[4] AS'rodoń J. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annual Review of Earth and Planetary Sciences,1999,27(27):19-53.
[5] Velde B,Vasseur G. Estimation of the diagenetic smectite to illite transformationin time-temperature space.American Mineralogist,1992,77:967-976.
[6] Awwiller D N. Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks;a study from the texas gulf coast paleocene-eocene. Journal of Sedimentary Research,1993,63(3):501-512.
[7] Ferrage E,Vidal O,Mosser-Ruck R,et al. A reinvestigation of smectite illitization in experimental hydrothermal conditions:Results from X-ray diffraction and transmission electron microscopy. American Mineralogist,2011,96(1):207-223.
[8] Berger G,Velde B,Aigouy T. Potassium sources and illitization in Texas Gulf Coast shale diagenesis. Journal of Sedimentary Research,1999,69(1):151-157.
[9] Pevear D R. Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3440-3446.
[10] Li Y L,Cai J G,Wang X J et al. Smectite-illitization difference of source rocks developed in saline and fresh water environments and its influence on hydrocarbon generation:A study from the Shahejie Formation,Dongying Depression,China.Marine and Petroleum Geology,2017,80:349-357.
[11] Huang W L. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals,1993,41(2):162-177.
[12] Moore D M,Reynolds R C. X-ray diffraction and the identification and analysis of clay minerals. 2nd ed. Oxford:Oxford University Press,1997,318-321
[13] AS'rodoń J. Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays and Clay Minerals,1980,28(6):401-411.
[14] AS'rodoń J. X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals,1984,32(5):337-349.
[15] 陆 琦,刘惠芳,雷新荣. 蒙脱石+伊/蒙混层+伊利石等粘土矿物混合物相X射线定量分析方法—模拟定量法. 矿物学报,1993,13(1):14-22.(Lu Q,Liu H F,Lei X R. simulating quantitative analysis method-quantitative analysis of clay mineral mixtures of montmorillonite,illite/smectite interstratified clay minerals,illite chorite and some others. Acta Mineralogica Sinica,1993,13(1):14-22.)
[16] 林西生. X射线衍射分析技术及其地质应用. 北京:石油工业出版社,1990,50-60(Lin X S. X-ray diffraction technique and its application in geology. Beijing:Petroleum Industry Press,1990,50-60)
[17] Kennedy M J,Lhr S C,Fraser S A,et al. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale;from deposition to diagenesis. Earth and Planetary Science Letters,2014,388:59-70.
[18] Theng B K G. Formation and properties of clay-polymer complexes. 2nd ed. Netherlands:Elsevier Science,2012,295-296.
[19] Yariv S,Cross H. Organo-clay complexes and interactions. Boca Raton:CRC Press,2001,22-23
[20] Chenu C,Le Bissonnais Y,Arrouays D. Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal,2000,64(4):1479-1486.
[21] Cai J G,Bao Y J,Yang S Y,et al. Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone. Science in China Series D:Earth Sciences,2007,50(5):765-775.
[22] Mikutta R,Kleber M,Kaiser K,et al. Review:Organic matter removal from soils using hydrogen peroxide,sodium hypochlorite,and disodium peroxodisulfate. Soil Science Society of America Journal,2005,69(1):120-135.
[23] 巢 前,蔡进功,周祺盛等. 烃源岩中有机质的差异赋存与演化 ∥ 第十四届全国古地理学及沉积学学术会议论文摘要集. 河南,焦作:中国矿物岩石地球化学学会岩相古地理专业委员会,2016:197-198.(Chao Q,Cai J G,Zhou Q S,et al. The discriminative occurrence and evolution of organic matter in source rock ∥ The 14th National Conference of Palaeography and Sedimentology. Jiaozuo,He’nan:Chinese society for mineralogy petrology and geochemistry,2016:197-198)
[24] Menegatti A P,Früh-Green G L,Stille P. Removal of organic matter by disodium peroxodisulphate:Effects on mineral structure,chemical composition and physicochemical properties of some clay minerals. Clay Minerals,1999,34(2):247-257.
[25] Kiem R,Knicker H,Kgel-Knabner I. Refractory organic carbon in particle-size fractions of arable soils I:Distribution of refractory carbon between the size fractions. Organic Geochemistry,2002,33(12):1683-1697.
[26] Lanson B. Crystal structure of mixed-layer minerals and their X-ray identification:New insights from X-ray diffraction profile modeling. Clay Science,the Clay Science of Japan,2005,12(S1):1-5.
[27] Howard S A,Preston K D. Profile fitting of powder diffraction patterns. Reviews in Mineralogy and Geochemistry,1989,20(1):217-275.
[28] Ferrage E. Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology,applications,and perspectives. Clays and Clay Minerals,2016,64(4):348-373.
[29] McCarty D K,Sakharov B A,Drits V A. Early clay diagenesis in gulf coast sediments:New insights from XRD profile modeling. Clays and Clay Minerals,2008,56(3):359-379.
[30] Claret F,Sakharov B A,Drits V A,et al. Clay minerals in the meuse-haute marne underground laboratory(France):Possible influence of organic matter on clay mineral evolution. Clays and Clay Minerals,2004,52(5):515-532.
[31] Zeelmaekers E,Honty M,Derkowski A,et al. Qualitative and quantitative mineralogical composition of the Rupelian Boom Clay in Belgium. Clay Minerals,2016,50(2):249-272.
[32] Dong H. Interstratified illite-smectite:A review of contributions of TEM data to crystal chemical relations and reaction mechanisms. Clay Science,2005,12(S1):6-12.
[33] Heller-Kallai L,Yariv S. Swelling of montmorillonite containing coordination complexes of amines with transition metal cations. Journal of Colloid and Interface Science,1981,79(2):479-485.
[34] Meier L P,Menegatti A P. A new,efficient,one-step method for the removal of organic matter from clay-containing sediments. Clay Minerals,1997,32(4):557-563.
[35] Li Y L,Cai J G,Song M S,et al. Influence of organic matter on smectite illitization:A comparison between red and dark mudstones from the Dongying depression,China.American Mineralogist,2016,101(1):134-145.
[1] 游杰, 胡广, 张玺华, 沈安江, 彭瀚霖, 田兴旺, 赵东方. 微生物碳酸盐岩同生⁃早成岩阶段有机质降解示踪:以四川盆地灯影组四段为例[J]. 南京大学学报(自然科学版), 2020, 56(3): 308-321.
[2]  高鑫宇1,2,曾献奎1*,吴吉春1,苏辉东3,杜东东2,张兆丰2,金晓蕊2.  兰州窦家山典型坡面土壤水分、有机质含量及抗蚀性相关关系研究[J]. 南京大学学报(自然科学版), 2018, 54(1): 185-.
[3]  沈征涛1,王宝军1,施斌1**,姜洪涛2,高磊1,周春慧1

.  温湿度对土壤CO2释放影响的试验研究*[J]. 南京大学学报(自然科学版), 2012, 48(6): 761-767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘作国,陈笑蓉. 汉语句法分析中的论元关系模型研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 1010 -1019 .
[2] 柴变芳,魏春丽,曹欣雨,王建岭. 面向网络结构发现的批量主动学习算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 1020 -1029 .
[3] 黄华娟,韦修喜. 基于自适应调节极大熵的孪生支持向量回归机[J]. 南京大学学报(自然科学版), 2019, 55(6): 1030 -1039 .
[4] 周昊,沈庆宏. 基于改进音形码的中文敏感词检测算法[J]. 南京大学学报(自然科学版), 2020, 56(2): 270 -277 .