南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (2): 238–250.doi: 10.13232/j.cnki.jnju.2019.02.009

• • 上一篇    下一篇

基于可能性聚类和卷积神经网络的道路交通标识识别算法

狄 岚1*,何锐波1,梁久祯2   

  1. 1.江南大学数字媒体学院,无锡,214122;2.常州大学信息科学与工程学院,常州,213164
  • 接受日期:2019-01-19 出版日期:2019-04-01 发布日期:2019-03-31
  • 通讯作者: 狄 岚 E-mail:dilan@jiangnan.edu.cn
  • 基金资助:
    江苏省研究生科研与实践创新计划(KYCX18_1872)

Road traffic identification based on probability clustering and convolutional neural network

Di Lan1*,He Ruibo1,Liang Jiuzhen2   

  1. 1.School of Digital Media,Jiangnan University,Wuxi,214122,China; 2.School of Information Science and Engineering,Changzhou University,Changzhou,213164,China
  • Accepted:2019-01-19 Online:2019-04-01 Published:2019-03-31
  • Contact: Di Lan E-mail:dilan@jiangnan.edu.cn

摘要: 为解决图像采集中噪声和复杂背景对图片的影响以及深度神经网络的高耗时问题,基于可能性聚类算法与卷积神经网络,提出一种道路交通标识识别算法. 该方法运用了图像分割技术,并结合卷积神经网络模型对道路交通标识进行更准确的识别. 首先,通过色彩增强、图像分割、特征提取、数据增强和归一化等批量预处理操作,形成一个完整的数据集;然后,结合Squeeze-and-Excitation思想和残差网络结构,充分训练出MRESE(My Residual-Squeeze and Excitation)卷积神经网络模型;最后,将优化的网络模型用于道路交通标志的识别. 实验结果表明,该方法使训练时间缩短了5%左右,识别精度可达99.02%.

关键词: 道路交通标识识别, 卷积神经网络, Squeeze-and-Excitation网络, 残差连接

Abstract: In order to solve the influence of noise and complex background on image acquisition and the problem of high time consuming when we use the deep learning neural network,this paper proposes a road traffic identification algorithm combining probability clustering and deep learning neural network. The proposed method is for more accurate identification of road traffic signs using not only image segmentation technology but also the convolution neural network model. Firstly,a complete data set consists by batch preprocessing operations such as color enhancement,image segmentation,feature extraction,data enhancement and normalization. Then,we sufficiently trained our MRESE(My Residual-Squeeze and Excitation)convolution neural network model which combined the ideas of squeeze-and-excitation and residual network structure. Finally,the optimized network model is used to identify the road traffic signs. The experimental results show that the proposed method reduces the training time by about 5%,and the recognition accuracy can be reached 99.02%.

Key words: road traffic identification, convolutional neural network, Squeeze-and-Excitation Networks, residual connection

中图分类号: 

  • TP391.4
[1] Paulo C F,Correia P L. Traffic sign recognition based on pictogram contours ∥ 2008 9th International Workshop on Image Analysis for Multimedia Interactive Services. Klagenfurt,Austria:IEEE,2008:67-70.
[2] Yang H M,Liu C L,Liu K H,et al. Traffic sign recognition in disturbing environments ∥ Zhong N,Ra?Z W,Tsumoto S,et al. Foundations of Intelligent Systems. Lecture Notes in Computer Science,Springer Berlin Heidelberg,2003,2871:252-261.
[3] Bartneck N,Ritter W. Colour segmentation with polynomial classification ∥ 11th IAPR Interna-tional Conference on Pattern Recognition. Vol. II. Conference B:Pattern Recognition Methodology and Systems. The Hague,Netherlands:IEEE,1992:635-638.
[4] Sandoval H,Hattori T,Kitagawa S,et al. Angle-dependent edge detection for traffic signs recognition ∥ Proceedings of the IEEE Intelligent Vehicles Symposium 2000. Dearborn,MI,USA:IEEE,2000:308-313.
[5] Barnes N,Zelinsky A,Fletcher LS. Real-time speed sign detection using the radial symmetry detector. IEEE Transactions onIntelligent Transportation Systems,2008,9(2):322-332.
[6] Gao X W,Podladchikova L,Shaposhnikov D,et al. Recognition of traffic signs based on their colour and shape features extracted using human vision models. Journal of Visual Communication and Image Representation,2006,17(4):675-685.
  [7] Shen D G,Wu G R,Suk H I. Deep learning in medical image analysis. Annual Review of Biomedical Engineering,2017,19(1):221-248.
[8] Stallkamp J,Schlipsing M,Salmen J,et al. Man vs. computer:Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks,2012,32:323-332.
[9] 张 懿,刘 旭,李海峰. 数字RGB与YCbCr颜色空间转换的精度. 江南大学学报(自然科学版),2007,6(2):200-202.(Zhang Y,Liu X,Li H F. The precision of RGB color space convert to YCbCr color space. Journal of Southern Yangtze University(Natural Science Edition),2007,6(2):200-202.)
[10] Piccioli G,De Micheli E,Campani M. A robust method for road sign detection and recognition ∥ Eklundh JO. Computer Vision-ECCV’94. Lecture Notes in Computer Science,Springer Berlin Heidelberg,1994,800:493-500.
[11] Zhou J,Bao X,Li D W,et al. Traffic video image segmentation model based on Bayesian and spatio-temporal Markov random field. Journal of Physics:Conference Series,2017,910(1):Article ID 012041.
[12] 陈 力,刘伟峰,杨爱兰. 基于OSPA距离和特征点采样的路标识别算法. 哈尔滨师范大学自然科学学报,2017,33(2):55-57.(Chen L,Liu W F,Yang A L. A recognition algorithm for road signs based on the OSPA metric and characteristic point sampling. Natural Science Journal of Harbin Normal University,2017,33(2):55-57.)
  [13] Bengio Y,Delalleau O. On the expressive power of deep architectures ∥ Kivinen J,Szepesvri C,Ukkonen E,et al. Algorithmic Learning Theory. Lecture Notes in Computer Science. Springer Berlin Heidelberg,2011,6925:18-36.
[14] Islam K T,Raj R G. Real-time(vision-based)road sign recognition using an artificial neural network. Sensors,2017,17(4):853.
[15] Hu M K. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory,1962,8(2):179-187.
[16] Caron M,Bojanowski P,Joulin A,et al. Deep clustering for unsupervised learning of visual features. 2018,arXiv:1807. 05520.
[17] Kim D W,Lee K H,Lee D. On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition,2004,37(10):2009-2025. [18] Campello R J G B,Hruschka E R. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems,2006,157(21):2858-2875. [19] Forgy E. Cluster analysis of multivariate data:Efficiency versus interpretability of classifica-tions. Biometrics,1965,21(3):768-769.
[20] Krishnapuram R,Keller J M. The possibilistic C-means algorithm:insights and recommen-dations. IEEE Transactions on Fuzzy Systems,1996,4(3):385-393.
[21] 孙即祥. 模式识别中的特征提取与计算机视觉不变量. 北京:国防工业出版社,2001,317.
[22] Zeiler M D,Fergus R. Visualizing and understanding convolutional networks ∥ Fleet D,Pajdla T,Schiele B,et al. Computer Vision-ECCV 2014. Lecture Notes in Computer Science. Springer Berlin Heidelberg,2014,8689:818-833.
[23] Krizhevsky A,Sutskever I,Hinton G E. ImageNet classification with deep convolutional neural networks ∥ Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe,NV,USA:Curran Associates Inc.,2012:1097-1105.
[24] He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition ∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,USA:IEEE,2016:770-778.
[25] Jia Y Q,Shelhamer E,Donahue J,et al. Caffe:Convolutional architecture for fast feature embedding ∥ Proceedings of the 22nd ACM International Conference on Multimedia. Orlando,FL,USA:ACM,2014:675-678.
[26] 赵永科. 深度学习:21天实战Caffe. 北京:电子工业出版社,2016,392.
[1] 朱伟,张帅,辛晓燕,李文飞,王骏,张建,王炜. 结合区域检测和注意力机制的胸片自动定位与识别[J]. 南京大学学报(自然科学版), 2020, 56(4): 591-600.
[2] 梅志伟,王维东. 基于FPGA的卷积神经网络加速模块设计[J]. 南京大学学报(自然科学版), 2020, 56(4): 581-590.
[3] 赵子龙,赵毅强,叶茂. 基于FPGA的多卷积神经网络任务实时切换方法[J]. 南京大学学报(自然科学版), 2020, 56(2): 167-174.
[4] 王吉地,郭军军,黄于欣,高盛祥,余正涛,张亚飞. 融合依存信息和卷积神经网络的越南语新闻事件检测[J]. 南京大学学报(自然科学版), 2020, 56(1): 125-131.
[5] 胡 太, 杨 明. 结合目标检测的小目标语义分割算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 73-84.
[6] 安 晶, 艾 萍, 徐 森, 刘 聪, 夏建生, 刘大琨. 一种基于一维卷积神经网络的旋转机械智能故障诊断方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 133-142.
[7] 梁蒙蒙1,周 涛1,2*,夏 勇3,张飞飞1,杨 健1. 基于随机化融合和CNN的多模态肺部肿瘤图像识别[J]. 南京大学学报(自然科学版), 2018, 54(4): 775-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 阚 威, 李 云. 基于LSTM的脑电情绪识别模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 110 -116 .
[2] 程永林, 李德玉, 王素格. 基于极大相容块的邻域粗糙集模型[J]. 南京大学学报(自然科学版), 2019, 55(4): 529 -536 .
[3] 王霞, 谭斯文, 李俊余, 吴伟志. 基于条件属性蕴含的概念格构造及简化[J]. 南京大学学报(自然科学版), 2019, 55(4): 553 -563 .
[4] 郭小松,赵红丽,贾俊芳,杨静,孟祥军. 密度泛函理论方法研究第一系列过渡金属对甘氨酸的配位能力[J]. 南京大学学报(自然科学版), 2019, 55(6): 1040 -1046 .
[5] 党政,代群威,安超,彭启轩,卓曼他,杨丽君. 静态水蚀条件下自然钙华预制块的溶出特性研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 916 -923 .
[6] 段友祥,柳璠,孙歧峰,李洪强. 基于相带划分的孔隙度预测[J]. 南京大学学报(自然科学版), 2019, 55(6): 934 -941 .
[7] 俞冬明, 李苑, 李智星, 王国胤. 一种基于用户结构和属性的无监督用户对齐方法[J]. 南京大学学报(自然科学版), 2020, 56(1): 1 -8 .
[8] 刘显, 陈强路, 王小林, 丘靥, 杨源显. 方解石晶体定向性对水的拉曼光谱影响的实验评估[J]. 南京大学学报(自然科学版), 2020, 56(3): 297 -307 .
[9] 刘文平,周政,吴娟,罗超,吴伟,姜磊,焦堃,叶玥豪,邓宾. 川南盆地长宁页岩气田五峰组⁃龙马溪组成藏动力学过程及其意义[J]. 南京大学学报(自然科学版), 2020, 56(3): 393 -404 .
[10] 杜彦男,吴孔友,刘寅,林红梅,党思思,李彦颖,徐进军. 断陷盆地边界断裂结构特征及物性差异定量评价——以车镇凹陷埕南断裂为例[J]. 南京大学学报(自然科学版), 2020, 56(3): 405 -417 .