|本期目录/Table of Contents|

[1]赵天娜,米据生*,解 滨,等.基于多伴随直觉模糊粗糙集的三支决策[J].南京大学学报(自然科学),2017,53(6):1081.[doi:10.13232/j.cnki.jnju.2017.06.010]
 Zhao Tianna,Mi Jusheng*,Xie Bin,et al.Three-way decisions with multi-adjoint intuitionistic fuzzy rough sets[J].Journal of Nanjing University(Natural Sciences),2017,53(6):1081.[doi:10.13232/j.cnki.jnju.2017.06.010]
点击复制

基于多伴随直觉模糊粗糙集的三支决策()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第6期
页码:
1081
栏目:
出版日期:
2017-12-01

文章信息/Info

Title:
Three-way decisions with multi-adjoint intuitionistic fuzzy rough sets
作者:
赵天娜1米据生1*解 滨2梁美社13
1.河北师范大学数学与信息科学学院,石家庄,050024;
2.河北师范大学信息技术学院,石家庄,050024;
3.石家庄职业技术学院,石家庄,050081
Author(s):
Zhao Tianna1Mi Jusheng1*Xie Bin2Liang Meishe13
1.College of Mathematics and Information Science,Hebei Normal University,Shijiazhuang,050024,China;
2.College of Information Technology,Hebei Normal University,Shijiazhuang,050024,China;
3.Shijiazhuang Vocational Technology Institute,Shijiazhuang,050081,China
关键词:
 三支决策决策粗糙集理论多伴随直觉模糊粗糙集
Keywords:
three-way decisionsdecision-theoretic rough setsmulti-adjointintuitionistic fuzzy rough sets
分类号:
O236
DOI:
10.13232/j.cnki.jnju.2017.06.010
文献标志码:
A
摘要:
决策粗糙集提供了处理不确定数据和风险数据决策问题的一个新方法,基于决策粗糙集的三支决策理论是典型的风险决策理论的推广.传统的直觉模糊粗糙集采用一对三角模与蕴涵算子来构造逻辑算子,未考虑属性之间的差别,而多伴随直觉模糊粗糙集采用多个伴随对构造逻辑算子,更好地体现了用户偏好.构造了多伴随直觉模糊粗糙集模型,研究了基于多伴随直觉模糊粗糙集的三支决策.首先,定义了乐观多伴随直觉模糊粗糙集,并用于处理直觉模糊数的复杂计算问题;然后利用隶属函数和非隶属函数计算损失函数,通过期望损失函数对事件对象进行评估,进一步构造了相应的三支决策模型;基于期望损失函数值最小的原则诱导出三支决策,并得到相应决策的风险值.此模型中期望损失函数的构造是基于支持度与非支持度两种度量的综合讨论,考虑更全面,更能有效地反映实际生活情况,满足用户偏好.最后用医学诊断的例子来验证该模型的有效性.
Abstract:
Decision-theoretic rough set provides a new perspective to handle decision-making problems under uncertainty and risk.Three-way decision with decision-theoretic rough sets,generated by Bayesian decision theory,is a typical risk decision method.Traditional intuitionistic fuzzy rough set uses a pair of triangular norm and implication operator to construct the logical operator,which does not consider the difference between attributes.However,multi-adjoint intuitionistic fuzzy rough set constructs the logical operator using several adjoint triples,which better reflects the user preferences.In this paper,multi-adjoint intuitionistic fuzzy rough set is proposed,and three-way decision with multi-adjoint intuitionistic fuzzy rough sets is formulated.First,we define an multi-adjoint fuzzy rough set,and construct the optimistic multi-adjoint fuzzy rough set in order to deal with the complicated calculation of intuitionistic fuzzy value.As the determination of loss function is one of the key steps in the decision process,we then calculate the loss function by using the degree of membership and the degree of nonmembership.The event objects were assessed through the loss functions.And then,we construct corresponding three way decision model,and induce the three-way decision in order to make decisions with the minimum risk of loss and get the risk of the corresponding decision.The structure of the expected loss function synthetically considers the support and the nonsupport,which can effectively reflect the real life situation and meet user’s preferences.Finally,an example of medical diagnosis is employed to verify the effectiveness of the proposed model.

参考文献/References:

[1] Pawlak Z.Rough sets.International Journal of Computer & Information Sciences,1982,11(5):341-356.
[2] Atanassov K T.Intuitionistic fuzzy sets.Fuzzy Sets and Systems,1986,20(1):87-96.
[3] 徐泽水.区间直觉模糊信息的集成方法及其在决策中的应用.控制与决策,2007,22(2):215-219.(Xu Z S.Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making.Control and Decision,2007,22(2):215-219.)
[4] Mi J S,Leung Y,Zhao H Y,et al.Generalized fuzzy rough sets determined by a triangular norm.Information Sciences,2008,178(16):3203-3213.
[5] Feng T,Mi J S,Zhang S P.Belief functions on general intuitionistic fuzzy information systems.Information Sciences,2014,271:143-158.
[6] Medina J,Ojeda-Aciego M,Valverde A,et al.Towards biresiduated multi-adjoint logic programming.In:Conejo R,Urretavizcaya M,Pérez-de-la-Cruz JL.Current Topics in Artificial Intelligence.Springer Berlin Heidelberg,2004,3040:608-617.
[7] Yao Y Y.Three-way decisions with probabilistic rough sets.Information Sciences,2010,180(3):341-353.
[8] Yao Y Y,Wong S K M.A decision theoretic framework for approximating concepts.International Journal of Man-machine Studies,1992,37(6):793-809.
[9] 薛占熬,朱泰隆,薛天宇等.基于直觉模糊集的三支决策模型.计算机科学,2016,43(6):283-288,297.(Xue Z A,Zhu T L,Xue T Y,et al.Model of three-way decision theory based on intuitionistic fuzzy sets.Computer Science,2016,43(6):283-288,297.)
[10] Liang D C,Xu Z S,Liu D.Three-way decisions with intuitionistic fuzzy decision-theoretic rough sets based on point operators.Information Sciences,2017,375:183-201.
[11] Liang D C,Liu D.Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets.Information Sciences,2015,300:28-48.
[12] Liang D C,Xu Z S,Liu D.Three-way decisions based on decision-theoretic rough sets with dual hesitant fuzzy information.Information Sciences,2017,396:127-143.
[13] 张文修,吴伟志,梁吉业等.粗糙集理论与方法.北京:科学出版社,2001,19-30.(Zhang W X,Wu W Z,Liang J Y,et al.Rough set theory and method.Beijing:Science Press,2001,19-30.)
[14] 张文修,仇国芳.基于粗糙集的不确定决策.北京:清华大学出版社,2005,28-31.(Zhang W X,Qiu G F.Uncertain decision making based on rough sets.Beijing:TsingHua University Press,2005,28-31.)
[15] Atanassov K T.More on intuitionistic fuzzy sets.Fuzzy Sets and Systems,1989,33(1):37-45.
[16] Atanassov K T.Intuitionistic fuzzy sets:Theory and Applications.Heidelberg:Physica-Verlag,1999,324.
[17] Xu Z S.Intuitionistic preference relations and their application in group decision making.Information Sciences,2007,177(11):2363-2379. 
[18] Cornelis C,Medina J,Verbiest N.Multi-adjoint fuzzy rough sets:Definition,properties and attribute selection.International Journal of Approximate Reasoning,2014,55(1):412-426.
[19] 刘 盾,李天瑞,苗夺谦等.三支决策与粒计算.北京:科技出版社,2013,14-19.(Liu D,Li T R,Miao D Q,et al.Three-way decision and granular computing.Beijing:Science Press,2013,14-19.)

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(61573127,61502144,61300121),河北省自然科学基金(A2014205157),河北省大学创新团队训练项目基金(LIRC022),河北高等教育基金(QN2016133),河北师范大学博士基金(L2015B01),河北省教育厅创新基金(sj2015001),河北师范大学研究生创新项目基金(CXZZSS2017046)
收稿日期:2017-08-30
*通讯联系人,E-mail:mijsh@263.net
更新日期/Last Update: 2017-11-27