|本期目录/Table of Contents|

[1]张振华*,林小龙,甘穗福,等.一类带参数直觉模糊知识度量方法[J].南京大学学报(自然科学),2017,53(6):1100.[doi:10.13232/j.cnki.jnju.2017.06.012]
 Zhang Zhenhua*,Lin Xiaolong,Gan Suifu,et al.A knowledge measure with parameters of intuitionistic fuzzy sets[J].Journal of Nanjing University(Natural Sciences),2017,53(6):1100.[doi:10.13232/j.cnki.jnju.2017.06.012]
点击复制

一类带参数直觉模糊知识度量方法()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第6期
页码:
1100
栏目:
出版日期:
2017-12-01

文章信息/Info

Title:
A knowledge measure with parameters of intuitionistic fuzzy sets
作者:
张振华1*林小龙1甘穗福2袁申国3胡 勇4
1.广东外语外贸大学经济贸易学院,广州,510006;
2.广东外语外贸大学信息学院,广州,510006;
3.广东外语外贸大学金融学院,广州,510006;
4.暨南大学大数据决策研究所,广州,510632
Author(s):
Zhang Zhenhua1*Lin Xiaolong1Gan Suifu2Yuan Shenguo3Hu Yong4
1.School of Economics and Trade,Guangdong University of Foreign Studies,Guangzhou,510006,China;
2.School of Informatics,Guangdong University of Foreign Studies,Guangzhou,510006,China;
3.School of Finance,Guangdong University of Foreign Studies,Guangzhou,510006,China;
4.Institute of Big Data and Decision Making,Jinan University,Guangzhou,510632,China
关键词:
直觉模糊集正 熵负 熵知识度量
Keywords:
intuitionistic fuzzy setsentropypositive entropynegative entropyknowledge measure
分类号:
TP391
DOI:
10.13232/j.cnki.jnju.2017.06.012
文献标志码:
A
摘要:
熵和知识测度是表示模糊系统不确定性和有序性程度的重要工具,目前已有诸多研究成果.直觉模糊集比传统模糊集多了犹豫度向量,其模糊性和不确定性比传统模糊集更复杂.因此,在直觉模糊熵和直觉模糊知识度量领域,现有研究存在诸多不足,尤其缺乏对公理体系的细化研究,算子之间的对比和遴选缺乏统一的理论和方法指导.基于此,首先对Szmidt和Kacprzyk的公理体系开展研究,将基本性质分成非负有界、对称性和有序性,并针对有序性提出了一些易于判定的充分必要条件和必要条件.同时,利用可导条件下的有序性条件,对传统经典算子的有序性进行了证明.并依据有序性条件提出了新型的简便的带参数知识度量模型,同时证明这些模型满足公理体系.最后,从直觉模糊集合套构造,提出了检验是否满足有序性的实验方法,并对所提出的带参数模型在不同参数取值下与传统经典算法进行对比.实验结果表明,该带参数模型在不同参数取值下与传统算法的结果具有广泛的相似性,且特殊取值下的运算结果精度更高,总体精度高达98.73%,在所有算法中表现优秀.
Abstract:
Entropy and knowledge measure are important tools to express the uncertainty and certainty of fuzzy system,in which many achievements have been obtained.With the hesitancy degree,intuitionistic fuzzy sets(IFS)is more complex than traditional fuzzy sets in the ambiguity and uncertainty.Therefore,there are many deficiencies and shortcomings in the research of intuitionistic fuzzy entropy and intuitionistic fuzzy knowledge measurement,especially the lack of detailed research on the axiom system,unified theory and method.Hence,this paper first studies the axiom system presented by Szmidt and Kacprzyk,composed of non-negative boundedness,symmetry and order,and puts forward some necessary and sufficient conditions and necessary conditions for order property.Simultaneously,the order property of traditional classical operators is proved by using the necessary and sufficient conditions.Then a simple and convenient measurement model with parameter based on orderly condition is proposed,and it is proved that these models meet the axiom system.Finally,an experimental method to test the order property is proposed based on the intuitionistic fuzzy set.The experimental results show that the parametric model proposed in this paper are widely similar to the traditional algorithm under different parameter values,and the results of the presented method in some special values are more accurate than that of all classic models.The overall accuracy of our method is up to 98.73%,and the performance is excellent in all algorithms.

参考文献/References:

 [1] Zadeh L A.Fuzzy sets.Information and Control,1965,8(3):338-353.
[2] Zadeh L A.Fuzzy sets and systems.In:Proceedings of the Symposium on Systems Theory.Brooklyn,NY,USA:Polytechnic Press,1965,29-37.
[3] Zadeh L A.The concept of a linguistic variable and its application to approximate reasoning-I.Information Sciences,1975,8(3):199-249.
[4] Atanassov K T.Intuitionistic fuzzy sets.Fuzzy Sets and Systems,1986,20(1):87-96.
[5] Atanassov K T.Intuitionistic fuzzy sets:Theory and applications.Springer Berlin Heidelberg,1999,1-2.
[6] Atanassov K T.More on intuitionistic fuzzy sets.Fuzzy Sets and Systems,1989,33(1):37-45.
[7] Atanassov K T.New operations defined over the intuitionistic fuzzy sets.Fuzzy Sets and Systems,1994,61(2):137-142.
[8] Atanassov K T.On intuitionistic fuzzy sets theory.Studies in Fuzziness and Soft Computing,Springer Berlin Heidelberg,2012,283(1):1-321.
[9] Atanassov K,Gargov G.Interval valued intuitionistic fuzzy sets.Fuzzy Sets and Systems,1989,31(3):343-349.
[10] De Luca A,Termini S.A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory.Information and Control,1972,20(4):301-312.
[11] Yager R R.On the measure of fuzziness and negation part 1:Membership in the unit interval.International Journal of General Systems,1979,5(4):221-229.
[12] Higashi M,Klir G J.On measures of fuzziness and fuzzy complements.International Journal of General Systems,1982,8(3):169-180.
[13] Li J Q,Deng G N,Li H X,et al.The relationship between similarity measure and entropy of intuitionistic fuzzy sets.Information Sciences,2012,188:314-321.
[14] Bustince H,Barrenechea E,Pagola M,et al.Generalized Atanassov’s intuitionistic fuzzy index:Construction of Atanassov’s fuzzy entropy from fuzzy implication operators.International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2011,19(1):51-69.
[15] Hung W L,Yang M S.Fuzzy entropy on intuitionistic fuzzy sets.International Journal of Intelligent Systems,2006,21(4):443-451.
[16] Zhang H Y,Zhang W X,Mei C L.Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure.Knowledge-Based Systems,2009,22(6):449-454. 
[17] Barrenechea E,Bustince H,Pagola M,et al.Construction of interval-valued fuzzy entropy invariant by translations and scalings.Soft Computing,2010,14(9):945-952.
[18] Vlachos I K,Sergiadis G D.Subsethood,entropy and cardinality for interval-valued fuzzy sets-an algebraic derivation.Fuzzy Sets and Systems,2007,158(12):1384-1396.
[19] Zeng W Y,Li H X.Relationship between similarity measure and entropy of interval valued fuzzy sets.Fuzzy Sets and Systems,2006,157(11):1477-1484.
[20] Farhadinia B.A theoretical development on the entropy of interval-valued fuzzy sets based on the intuitionistic distance and its relationship with similarity measure.Knowledge-Based Systems,2013,39:79-84.
[21] Wei C P,Wang P,Zhang Y Z.Entropy,similarity measure of interval-valued intuitionistic fuzzy sets and their applications.Information Sciences,2011,181(19):4273-4286.
[22] Liu X D,Zheng S H,Xiong F L.Entropy and subsethood for general interval-valued intuitionistic fuzzy sets.In:Wang L,Jin Y.The 2nd International Conference on Fuzzy Systems and Knowledge Discovery(FSKD 2005).Springer Berlin Heidelberg,2005,3613(7):42-52.
[23] Zhang Q S,Jiang S Y.A note on information entropy measures for vague sets and its applications.Information Sciences,2008,178(21):4184-4191.
[24] Burillo P,Bustince H.Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets.Fuzzy Sets and Systems,1996,78(3):305-316.
[25] Szmidt E,Kacprzyk J.Entropy for intuitionistic fuzzy sets.Fuzzy Sets and Systems,2001,118(3):467-477.
[26] Szmidt E,Kacprzyk J.Some problems with entropy measures for the Atanassov intuitionistic fuzzy sets.In:Masulli F,Mitra S,Pasi G.The 7th International Workshop on Fuzzy Logic and Applications(WILF 2007).WILF 2007.Springer Berlin Heidelberg,2007,4578:291-297. 
[27] Szmidt E,Kacprzyk J,Bujnowski P.How to measure the amount of knowledge conveyed by Atanassov’s intuitionistic fuzzy sets.Information Sciences,2014,257:276-285.
[28] Montes I,Pal N R,Jani V,et al.Divergence measures for intuitionistic fuzzy sets.IEEE Transactions on Fuzzy Systems,2015,23(2):444-456.
[29] Pal N R,Bustince H,Pagola M,et al.Uncertainties with Atanassov’s intuitionistic fuzzy sets:Fuzziness and lack of knowledge.Information Sciences,2013,228:61-74.
[30] Zhang Q S,Jiang S Y,Jia B G,et al.Some information measures for interval-valued intuitionistic fuzzy sets.Information Sciences,2010,180(24):5130-5145.
[31] Guo K H.Knowledge measure for Atanassov’s intuitionistic fuzzy sets.IEEE Transactions on Fuzzy Systems,2016,24(5):1072-1078.
[32] Shannon C E.A mathematical theory of communication.The Bell System Technical Journal,1948,27(3):379-423.
[33] Brillouin L.Science and information theory.London:Academic Press,1956,114-304.
[34] Zhang Z H,Wang M,Hu Y,et al.A dynamic interval-valued intuitionistic fuzzy sets applied to pattern recognition.Mathematical Problems in Engineering,2013,2013:408012.
[35] 申晓勇,雷英杰,蔡 茹等.基于加权Minkowski距离的IFS相异度度量方法.系统工程与电子技术,2009,31(6):1358-1361.(Shen X Y,Lei Y J,Cai R,et al.Method for dissimilarity measure among intuitionistic fuzzy sets based on weighted Minkowski distance.Systems Engineering and Electronics,2009,31(6):1358-1361.)
[36] 王 毅,刘三阳,程月蒙等.基于倾向性的直觉模糊相似度量方法.系统工程与电子技术,2015,37(4):863-867.(Wang Y,Liu S Y,Cheng Y M,et al.Intuitionistic fuzzy similarity measure approach based on orientation.Systems Engineering and Electronics,2015,37(4):863-867.) 
[37] 单玉莹,裴道武.直觉模糊数排序方法的合理性.模糊系统与数学,2014,28(5):170-177.(Shan Y Y,Pei D W.Rationality of ordering methods of intuitionistic fuzzy numbers.Fuzzy Systems and Mathematics,2014,28(5):170-177.)
[38] De S K,Biswas R,Roy A R.Some operations on intuitionistic fuzzy sets.Fuzzy Sets and Systems,2000,114(3):477-484.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(71271061),国家统计局全国统计科研计划重点项目(2016LZ18),广东省自然科学基金(2014A030313575,2016A030313688),广东省软科学项目(2015A070704051),广东省哲学社会科学项目(GD12XGL14),广东省质量工程项目(125-XCQ16268),广州市哲学社会科学项目(14G41,2017GZYB45),广东省教育厅科技创新项目(2013KJCX0072),广东外语外贸大学特色创新项目(15T21),广东外语外贸大学重点创新团队项目(TD1605),广东外语外贸大学高等教育重点项目(2016GDJYYJZD004,GYJYZDA14002),大学生创新创业训练计划(201711846004)
收稿日期:2017-08-17
*通讯联系人,E-mail:zhangzhenhua@gdufs.edu.cn
更新日期/Last Update: 2017-11-27